Advertisement

Optimal Power Flow

  • Soliman Abdel-Hady Soliman
  • Abdel-Aal Hassan Mantawy
Chapter
Part of the Energy Systems book series (ENERGY)

Abstract

The objectives of this chapter are Studying the load flow problem and representing the difference between the conventional load flow and the optimal load flow (OPF) problem Introducing the different states used in formulating the OPF Studying the multiobjective optimal power flow problem Introducing the particle swarm optimization algorithm as a tool to solve the optimal power flow problem

Keywords

Reactive Power Particle Swarm Optimization Algorithm Power Flow Nondominated Solution Optimal Power Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans. Power Appar. Syst. 103(10), 2864–2880 (1984)CrossRefGoogle Scholar
  2. 2.
    El-Hawary, M.E., Rao, R.S., Christensen, G.S.: Optimal hydro-thermal load flow: Formulation and a successive approximation solution for fixed head systems. J. Optimal Control Appl. Meth. 7(4), 334–355 (1986)Google Scholar
  3. 3.
    Das, D.B., Patvardhan, C.: Useful multi-objective hybrid evolutionary approach to optimal power flow. IEE Proc-Gener. Transm. Distrib 150(3), 275–282 (2003)CrossRefGoogle Scholar
  4. 4.
    Kulworawanichpong, S.S.: Optimal power flow using Tabu search. In: IEEE Power Engineering Review, pp. 37–39. June 2002.Google Scholar
  5. 5.
    Prasad, N.P., Abdel-Moamen, M.A., Trivedi, P.K, Das, B.: A hybrid model for optimal power flow incorporating FACTS devices. In: Power Engineering Society Winter Meeting, 2001. IEEE, vol. 2, pp. 510–515. Feb 2001Google Scholar
  6. 6.
    Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: Optimal power flow by enhanced genetic algorithm. IEEE T Power Syst 17(2), 229–236 (2002)CrossRefGoogle Scholar
  7. 7.
    Aguado, J. A., Quintana, V.H.: Optimal power flows of interconnected power systems. In: IEEE Power Engineering Society Summer Meeting, vol. 2, pp. 814–819. Jul 1999Google Scholar
  8. 8.
    Kubokawa, J., Sasaki, H., Yorino, N.: A Fast solution method for multiobjective optimal power flow using an interactive approach. Electr Eng Japan 114(2), 57–66 (1994)CrossRefGoogle Scholar
  9. 9.
    Nangia, U., Jain, N.K., Wadhwa, C.L.: Optimal weight assessment based on a range of objectives in a multi-objective optimal load flow study. IEE Proc-Gener. Transm. Distrib 145(1), 65–69 (1998)CrossRefGoogle Scholar
  10. 10.
    Farag, A., Baiyat, S., Cheng, T.C.: Economic load dispatch multiobjective optimization using linear programming techniques. IEEE T Power Syst 10(2), 731–738 (1995)CrossRefGoogle Scholar
  11. 11.
    Zhiqiang, Y., Zhijian, H.: Economic dispatch and optimal flow based on chaotic optimization, Power system technology, 2002. In: Proceedings International Conference on PowerCon 2002, Kunming, China, vol. 4, pp. 2313–2317. 13–17 Oct 2002Google Scholar
  12. 12.
    Zhang, S., Irving, M.R.: Analytical algorithm for constraint relaxation in LP-based optimal power flow. IEE Proc 140(4), 326–330 (1993)Google Scholar
  13. 13.
    Alsac, O., Stott, B.: Optimal load flow with steady state security. IEEE Trans Power Appar Syst 93, 745–751 (1974)CrossRefGoogle Scholar
  14. 14.
    Dommel, H., Tinny, W.: Optimal power flow solution. IEEE Trans Powr Appar Syst PSA-87(10), 1866–76 (1968)CrossRefGoogle Scholar
  15. 15.
    Shoults, R., Sun, D.: Optimal power flow based on P-Q decomposition. IEEE Trans Power Appar Syst PSA-101(2), 397–405 (1982)CrossRefGoogle Scholar
  16. 16.
    Happ, H.H.: Optimal power dispatch: A comprehensive survey. IEEE Trans Power Appar Syst PSA-96, 841–854 (1977)CrossRefGoogle Scholar
  17. 17.
    Mamandur, K.R.C.: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization. IEEE Trans Power Appar Syst PSA-100(7), 3185–93 (1981)CrossRefGoogle Scholar
  18. 18.
    Habiabollahzadeh, H., Luo, G.X., Semlyen, A.: Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE Trans Power Appar Syst PWRS-4(2), 530–7 (1989)Google Scholar
  19. 19.
    Grudinin, N.: Combined quadratic-separable programming OPF algorithm for economic dispatch and security control. IEEE T Power Syst 12(4), 1682–1688 (1997)CrossRefGoogle Scholar
  20. 20.
    Momoh, J.A.: A generalized quadratic-based model for optimal power flow. In: IEEE International Conference on Conference Proceedings Systems, Man and Cybernetics, vol. 1, pp. 261–271. Nov 1989Google Scholar
  21. 21.
    Burchett, R.C., Happ, H.H., Vierath, D.R.: Quadratically convergent optimal power flow. IEEE Trans Power Appar Syst PAS-103, 3267–76 (1984)CrossRefGoogle Scholar
  22. 22.
    AoKi, K., Nishikori, A., Yokoyama, R.T.: Constrained load flow using recursive quadratic programming. IEEE Trans Power Appar Syst PAS-2(1), 8–16 (1987)Google Scholar
  23. 23.
    Reid, G.F., Hasdorf, L.: Economic dispatch using quadratic programming. IEEE Trans Power Appar Syst PAS-92, 2015–2023 (1973)CrossRefGoogle Scholar
  24. 24.
    Nanda, J.: New Optimal power-dispatch algorithm using Fletcher’s quadraticc programming method. IEE Proc 136(3), 153–161 (1989)Google Scholar
  25. 25.
    Almeida, K.C., Salgado, R.: Optimal power flow solutions under variable load conditions. IEEE Tran Power Appar Systems 15(4), 1204–1211 (2000)CrossRefGoogle Scholar
  26. 26.
    Torres, G.L., Quintana, V.H.: Optimal power flow by a nonlinear complementarily method. IEEE Trans Power Appar Syst 15(3), 1028–1033 (2000)CrossRefGoogle Scholar
  27. 27.
    Pudjianto, S.A., Strbac, G.: Allocation of Var support using LP and NLP based optimal power flows. IEE Proc.-Gener. Transm. Distrib. 149(4), 377–383 (2002)CrossRefGoogle Scholar
  28. 28.
    Stadlin, W., Fletcher, D.: Voltage verus reactive current model for dispatch and control. IEEE Trans Power Appar Syst PAS-101(10), 3751–8 (1982)CrossRefGoogle Scholar
  29. 29.
    Mota-Palomino, R.: Sparse reactive power scheduling by a penalty-function linear programming technique. IEEE Trans Power Appar Syst PAS-1(3), 31–39 (1986)Google Scholar
  30. 30.
    Aoki, K., Kanezashi, M.: A modified Newton method for optimal power flow using quadratic approximation power flow. IEEE Trans Power Appar Syst PAS-104(8), 2119–2124 (1985)CrossRefGoogle Scholar
  31. 31.
    Salgado, R., Brameller, A., Aitchison, P.: Optimal power flow solutions using the gradient projection method part 2: Modeling of the power system equations. Gener Trans Distrib, IEE Proc 137(6), 429–435 (1990)CrossRefGoogle Scholar
  32. 32.
    CIGRE.: Application of optimization techniques to study power system network performance, Task Force 38-04-02 Final Report, Chapter 2, Apr 1994Google Scholar
  33. 33.
    Frauendorfer, K., Glavitsch, H., Bacher, R.: Optimization in planning and operation of electrical power systems. Physica, Heidelberg (1992). (A Springer Company), ISBN-10: 3790807184Google Scholar
  34. 34.
    Saha, T.N., Maitra, A.: Optimal power flow using the reduced Newton approach in rectangular coordinates. Electr Power Energy Syst 20(6), 383–389 (1998)CrossRefGoogle Scholar
  35. 35.
    Hong, Y.Y., Liao, C.M., Lu, T.G.: Application of Newton optimal power flow to assessment of VAR control sequences on voltage security: Case studies for a practical power system. IEE Proc-C 140(6), 539–543 (1993)Google Scholar
  36. 36.
    Baptista, E.C.: A new solution to the optimal power flow problem, 2001 IEEE Porto Power Tech Conference, Porto, Portugal, vol. 3, Sept. 10th–Sept. 13th, 2001Google Scholar
  37. 37.
    Talaq, J.H.: Minimum emissions power flow using Newton’s method and its variants. Electr Power Syst Res J 39, 233–239 (1996)CrossRefGoogle Scholar
  38. 38.
    Zhang, S.: “Enhanced newton-raphson algorithm for normal control and optimal power flow solutions using column exchange techniques. IEE Proc Gener Trans Distrib 141(6), 4647–657 (1994)CrossRefGoogle Scholar
  39. 39.
    Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans Power Appar Syst PAS-103, No.10, 2864–2880 (1984)CrossRefGoogle Scholar
  40. 40.
    Santos, A.: Optimal power flow solution by Newton’s method applied to AN augmented lagrangian function. IEE Proc Gener Transm Distrib 142(1), 33–36 (1995)CrossRefGoogle Scholar
  41. 41.
    Rahli, M.: Optimal power flow using sequential unconstrained minimization technique (SUMT) method under power transmission losses minimization. Electr Power Syst Res J 52, 61–64 (1999)CrossRefGoogle Scholar
  42. 42.
    Shengsong, L., Zhijian, H., Min, W.: A hybrid algorithm for optimal power flow using the chaos optimization and the linear interior point algorithm. In: Power System Technology, 2002. Proceedings International Conference on Power Con 2002, vol. 2, pp. 793–797. 13–17 Oct 2002Google Scholar
  43. 43.
    Momoh, J.A.: Improved interior point method for OPF problems. IEEE Trans Power Syst 14(3), 1114–20 (1999)CrossRefGoogle Scholar
  44. 44.
    Yan, X., Quintana, V.H.: Improved interior point based OPF by dynamic adjustment of step sizes and tolerances. IEEE Trans Power Syst 14(2), 709–17 (1999)CrossRefGoogle Scholar
  45. 45.
    Wu, Y.C., Debs, A.S.: Initialization, decoupling, Hot start, and warm start in direct nonlinear interior point algorithm for optimal power flows. IEE Proc-Gener. Transm. Distrib 148(1), 67–75 (2001)CrossRefGoogle Scholar
  46. 46.
    Bala, J.L.: An improved second order method for optimal load flow. IEEE Trans Power Appar Syst PAS-97(4), 1239–1244 (1978)CrossRefGoogle Scholar
  47. 47.
    Almeida, K.C., Galiana, F.D., Soares, S.: A general parametric optimal power flow. IEEE T Power Syst 9(1), 540–547 (1994)CrossRefGoogle Scholar
  48. 48.
    Huneault, M., Galiana, F.D.: A survey of the optimal power flow literature. IEEE T Power Syst 6(2), 762–770 (1991)CrossRefGoogle Scholar
  49. 49.
    Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 part-I: Nonlinear and quadratic programming approaches. IEEE T Power Syst 14(1), 96–104 (1999)CrossRefGoogle Scholar
  50. 50.
    Carpinter, J.: Contribution to the economic dispatch problem. Bulletin Society Francaise Electriciens 3(8), 431–447 (1962)Google Scholar
  51. 51.
    Xie, K., Song, Y.H.: Dynamic optimal power flow by interior point methods. IEE Proc-Gener. Transm. Distrib 148(1), 76–84 (2001)CrossRefGoogle Scholar
  52. 52.
    Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 part-II: Newton, linear programming & interior point methods. IEEE T Power Syst 14(1), 105–111 (1999)CrossRefGoogle Scholar
  53. 53.
    Stott, B., Marinho, J.L.: Linear programming for power system network security applications. IBID PAS-98, 837–848 (1979)Google Scholar
  54. 54.
    Stott, B., Hobson, E.: Power system security control calculation using linear programming. IEEE Trans PAS-97, 1713–1731 (1978)Google Scholar
  55. 55.
    Stott, B., Marinho, J., Alsac, O.: Review of linear programming applied to power system rescheduling. In: IEEE PICA Conference Proceedings, Cleveland, Ohio, pp. 142–154 (1979)Google Scholar
  56. 56.
    Alsac, O., Bright, J., Prais, M., Stott, B.: Further development in LP-based optimal power flow. In: IEEE/PES 1990 Winter Meeting, Atlantic, Georgia, Feb 1990Google Scholar
  57. 57.
    Cheng, D.T.: The challenges of using an optimal power flow. In: IEEE Power Engineering Review, pp. 62–63. Oct 1998Google Scholar
  58. 58.
    El-Hawary, M.E., Christensen, G.S.: Hydro-thermal load flow using functional analysis. J. Optimization Theory Appl. 12, 576–587 (1973)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Vaahedi, E., Zein El-Din, H.: Considerations in applying optimal power flow to power system operation. IEEE T Power Syst 4(2), 694–703 (1989)CrossRefGoogle Scholar
  60. 60.
    Tinney, W.F., Bright, J.M., Demaree, K.D., Hughes, B.A.: Some deficiencies in optimal power flow. IEEE T Power Syst 3, 676–683 (1988)CrossRefGoogle Scholar
  61. 61.
    Burchett, R.C., Happ, H.H., Palmer, R.E., Vierath, D.R.: Quadratically convergent optimal power flow. IEEE Trans. Power Appar. Syst. 103(11), 3264–3275 (1984)CrossRefGoogle Scholar
  62. 62.
    Fogel, D.B.: Evolutionary computational toward a New philosophy of machine intelligence. IEEE Press, New York (1995)Google Scholar
  63. 63.
    Stott, B., Alsac, O.: Fast decoupled load flow. IEEE Trans PSA PAS-93, No. 3, 859–867 (1974)Google Scholar
  64. 64.
    Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans Energy Conver 17(3), 406–413 (2002)CrossRefGoogle Scholar
  65. 65.
    Liu, E., Papalexopoulos, A.D., Tinney, W.F.: Discrete shunt controls in a Newton optimal power flow. IEEE T Power Syst 7, 1519–1528 (1999)Google Scholar
  66. 66.
    Zhu, J.Z., Irving, M.R.: Combined active and reactive dispatch with multiple objectives using an analytic hierarchical process. IEE Proc-Gener. Transm. Distrib 143(4), 344–352 (1996)CrossRefGoogle Scholar
  67. 67.
    Nangia, U., Jain, N.K., Wadhwa, C.L.: Surrogate worth trade-off technique for multi-objective optimal power flows. IEE Proc-Gener, Transm Distrib 144(6), 547–553 (1997)CrossRefGoogle Scholar
  68. 68.
    Lai, L.L., MA, J.T., Yokohoma, R., Zhao, M.: Improved genetic algorithm for optimal power flow under both normal and contingent operation states. Electr Power Energy Syst 19, 287–291 (1997)CrossRefGoogle Scholar
  69. 69.
    Chen, L., Suzuki, H., Katou, K.: Mean field theory for optimal power flow. IEEE T Power Syst 12, 1481–1486 (1997)CrossRefGoogle Scholar
  70. 70.
    Miranda, V., Srinivasan, D., Proenca, L.M.: Evolutionary computation in power systems. Electr Power Energy Sys 20, 89–98 (1998)CrossRefGoogle Scholar
  71. 71.
    Abido, M.A.: Optimal power flow using particle swarm optimization. Electr Power Energy Syst 24, 563–571 (2002)CrossRefGoogle Scholar
  72. 72.
    Venkatesh, B., Rakesh Ranjan, Gooi, H.B.: Effect of minimizing var losses on voltage stability in a unified OPF framework. In: IEEE Power Engineering Review, pp. 45–47. Nov 2002Google Scholar
  73. 73.
    Abido, M.A.: Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE T Power Syst 18(4), 1529–1537 (2003)CrossRefGoogle Scholar
  74. 74.
    El-Keib, A.A., Ma, H., Hart, J.L.: Economic dispatch in view of the clean Air Act of 1990. IEEE T Power Syst 9, 972–978 (1994)CrossRefGoogle Scholar
  75. 75.
    Talaq, J.H., El-Hawary, F., El-Hawary, M.E.: A summary of environmental/economic dispatch algorithms. IEEE T Power Syst 9, 1508–1516 (1994)CrossRefGoogle Scholar
  76. 76.
    Hu, X., Eberhart, R.C., Shi, Y.: Engineering optimization with particle swarm. In: IEEE International Conference on Evolutionary Computation. pp. 53–57 (2003)Google Scholar
  77. 77.
    Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: Proceedings of 1997 IEEE International Conference Evolutionary Computation ICEC 97, Indianapolis, pp. 303–308 (1997)Google Scholar
  78. 78.
    Angeline, P.: Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Proceedings of 7th Annual Conference Evolutionary Programming, San Diego, pp. 601–610 (1998)Google Scholar
  79. 79.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of 7th Annual Conference Evolutionary Programming, San Diego pp. 591–600 (1998)Google Scholar
  80. 80.
    Ozcan, E., Mohan, C.: Analysis of a simple particle swarm optimization system. Intell Eng Syst Artif Neural Net 8, 253–8 (1998)Google Scholar
  81. 81.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE int. Conf. Evol Comput 4, 1942–1948 (1995)Google Scholar
  82. 82.
    Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. IEEE int. Conf. Evol Comput 1, 84–88 (2000)Google Scholar
  83. 83.
    Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE T Power Syst 18(3), 11871–195 (2003)CrossRefGoogle Scholar
  84. 84.
    Papalexopoulos, A.D., Imparato, C.F., Wu, F.F.: Large-scale optimal power flow: Effects of initialization, decoupling & discretization. IEEE T Power Syst 4(2), 748–759 (1989)CrossRefGoogle Scholar
  85. 85.
    Hirotaka, Y., Kawata, K., Fukuyama, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE T Power Syst 15(4), 1232–1239 (2000)CrossRefGoogle Scholar
  86. 86.
    Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a New algorithm with applications in power systems. IEEE T Power Syst 2, 745–750 (2000)Google Scholar
  87. 87.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 69–73. May 1998Google Scholar
  88. 88.
    Kennedy, J., Spears, W.: Matching algorithm to problems: An experimental test of the particle swarm optimization and some genetic algorithms on the multimodal problem generator. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 78–83. May 1998Google Scholar
  89. 89.
    Angeline, P.: Using selection to improve particle swarm optimization, In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 84–89. May 1998Google Scholar
  90. 90.
    Huneault, M., Galliana, E.D.: A survey of the optimal power flow literature. IEEE T Power Syst 6(2), 762–770 (1991)CrossRefGoogle Scholar
  91. 91.
    Squires, R.B.: Economic dispatch of generation directly from power system voltages and admittances. AIEE Trans. Power Appar. Syst PAS-79(III), 1235–1244 (1961)Google Scholar
  92. 92.
    El-Hawary, M.E., Christensen, G.S.: Optimal economic operation of electric power systems. Academic, New York (1979)Google Scholar
  93. 93.
    El-Hawary, M.E., Tsang, D.H.: The hydro-thermal optimal load flow: A practical formulation and solution technique using Newton's approach. IEEE Trans. Power Syst. Eng PWRS-1(3), 154–167 (1986)Google Scholar
  94. 94.
    Vlachogiannis, J.G.: Fuzzy logic application in load flow studies. IEE Proc Gener Transm Distrib 148(1), 34–40 (2001)CrossRefGoogle Scholar
  95. 95.
    Xie, K., Song, Y.H.: Power market oriented optimal power flow via an interior point method. IEE Proc-Gener. Transm. Distrib 148(6), 549–556 (2001)CrossRefGoogle Scholar
  96. 96.
    Salgado, R., Brameller, A., Aitchison, P.: Optimal power flow solutions using the gradient projection method part 1: Theoretical basis. IEE Proc 137(6), 424–428 (1990)Google Scholar
  97. 97.
    Zhenya, H., et al.: Extracting rules from fuzzy neural network by particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 74–77. May 1998Google Scholar
  98. 98.
    Hartati, R.S.: Optimal active power flow solutions using a modified Hopfield neural network. In: IEEE T Power Syst, pp. 189–194 (2000)Google Scholar
  99. 99.
    Lee, K., Park, Y., Ortiz, J.: A united approach to optimal real and reactive power dispatch. IEEE Trans Power Appar Syst 104(5), 1147–53 (1958)CrossRefGoogle Scholar
  100. 100.
    Cohon, J.L., Marks, D.H.: A review and evaluation of multiobjective programming techniques. Water Res Res 12, 845–851 (1975)Google Scholar
  101. 101.
    Cohon, J.L., Church, R.L., Sheer, D.P.: Generating multiobjective trade-offs: An algorithm for bicriterion problems. Water Res Res 15, 1001–1010 (1979)CrossRefGoogle Scholar
  102. 102.
    Wadhwa, C.L., Jain, N.K.: Multiple objective optimal load flow: A new perspective. IEE Proc-Gener, Trans Distri 137(1), 13–18 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Soliman Abdel-Hady Soliman
    • 1
  • Abdel-Aal Hassan Mantawy
    • 2
  1. 1.Department of Electrical Power and MachinesMisr University for Science and Technology6th of October CityEgypt
  2. 2.Department of Electrical Power and MachinesAin Shams UniversityCairoEgypt

Personalised recommendations