Influence of Structural Parameters of Carbon Nanotubes on their Thermal Conductivity: Numerical Assessment

  • Bartosz Platek
  • Tomasz Falat
  • Jan Felba


This paper focuses on the influence of different parameters of carbon nanotubes (CNT) like length, diameter and chiral vector on its thermal conductivity. To calculate the value of CNT thermal conductivity, a molecular modeling technique was used. For this purpose a special algorithm based on non-equilibrium molecular dynamic was implemented in commercial software.


Thermal Conductivity Heat Flux Mean Free Path Thermal Interface Material Chiral Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed as part of the framework for the “CArbon NanOtubes/ePoxY composites (CANOPY)” project; Eurypides contract no. 06-176. Authors acknowledge Wroclaw Center for Networking and Supercomputing (WCSS) for the possibility of using modeling software and hardware.


  1. 1.
    Saito R et al (1992) Electronic structure of chiral graphene tubules. App Phys Lett 60:2205Google Scholar
  2. 2.
    Ruoff RS et al (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Physique 4:993–1008Google Scholar
  3. 3.
    Berber S et al (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616CrossRefGoogle Scholar
  4. 4.
    Philip K et al (2002) Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B 323:67–70CrossRefGoogle Scholar
  5. 5.
    Yang W et al (2008) Mounting multi-walled carbon nanotubes on probes by dielectrophoresis, diamond and related materials. Diam Relat Mater 17:1877–1880CrossRefGoogle Scholar
  6. 6.
    Ashurts WT, Hoover WG (1975) Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Phys Rev A 11:658Google Scholar
  7. 7.
    Ikeshoji T, Hafskjold B (1994) Non-equilibrium molecular dynamics of heat conduction in liquid and through liquid-gas interface. Mol Phys 81:251–261CrossRefGoogle Scholar
  8. 8.
    Fischer JE (2005) Carbon nanotubes: structure and proprties. In: Gogotsi Y (ed) Nanotubes and nanofibers. CRC Press, Boca Raton, pp 1–36Google Scholar
  9. 9.
    Bondi A (1964) Van der Waals volumes and radii. Phys Chem 68(3):441–451CrossRefGoogle Scholar
  10. 10.
    Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5:1842–1846CrossRefGoogle Scholar
  11. 11.
    Material property database:
  12. 12.
    Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74:3005–3007CrossRefGoogle Scholar
  13. 13.
    Pascual-Gutiérrez JA, Murthy JY, Viskanta R (2009) Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential. J Appl Phys 106:063532CrossRefGoogle Scholar
  14. 14.
    Ju YS (2005) Phonon heat transport in silicon nanostructures. Appl Phys Lett 87:153106CrossRefGoogle Scholar
  15. 15.
    Hepplestone SP, Srivastava GP (2007) Lowtemperature mean-free path of phonons in carbon nanotubes. J Phys Conf Ser 92:012–076CrossRefGoogle Scholar
  16. 16.
    Ghosh S et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911CrossRefGoogle Scholar
  17. 17.
    Asheghi M et al (1997) Phonon-boundary scattering in thin silicon layer. Appl Phys Lett 71:1798–1800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Microsystems Electronics and PhotonicsWroclaw University of TechnologyWroclawPoland

Personalised recommendations