Eusocial Evolution and the Recognition Systems in Social Insects

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 739)

Abstract

Eusocial species, animals which live in colonies with a reproductive division of labor, typically have closed societies, in which colony members are allowed entry and nonmembers, including animals of the same species, are excluded. This implies an ability to discriminate colony members (“self”) from nonmembers (“nonself”). We draw analogies between this type of discrimination and MHC-mediated cellular recognition in vertebrates. Recognition of membership in eusocial colonies is typically mediated by differences in the surface chemistry between members and nonmembers and we review studies which support this hypothesis. In rare instances, visual signals mediate recognition. We highlight the need for better understanding of which surface compounds actually mediate recognition and for further work on how differences between colony members and nonmembers are perceived.

Keywords

Europe Hexane Hydrocarbon Assimilation Alkene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson EO. The Insect Societies. Harvard University Press, 1974:562.Google Scholar
  2. 2.
    Choe JC, Crespi BJ. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, 1997:552.Google Scholar
  3. 3.
    Michener CD. The Social Behavior of the Bees. Harvard University Press, 1974:418.Google Scholar
  4. 4.
    Hölldobler B, Wilson EO. The Ants. Harvard University Press, 1990:752.Google Scholar
  5. 5.
    Hunt JH. The Evolution of Social Wasps. Oxford University Press, 2007:280.Google Scholar
  6. 6.
    Costa JT. The Other Insect Societies. Harvard University Press, 2006:812.Google Scholar
  7. 7.
    Sherman PW, Jarvis JUM, Alexander RD. The Biology of the Naked Mole-Rat. Princeton University Press, 1991:536.Google Scholar
  8. 8.
    Faulkes CG, Abbott DH, Smith TE. Socially induced suppression of reproduction in colonies of naked mole-rats. Appl Anim Behav Sci 1991; 31:293–294.CrossRefGoogle Scholar
  9. 9.
    Clarke FM, Faulkes CG. Intracolony aggression in the eusocial naked mole-rat, Heterocephalus glaber. Anim Behav 2001; 61:311–324.CrossRefGoogle Scholar
  10. 10.
    Duffy JE, Morrison CL, Macdonald KS. Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis. Behav Ecol Sociobiol 2002; 51:488–495.CrossRefGoogle Scholar
  11. 11.
    Kranz BD, Schwarz, Morris MD et al. Life history of Kladothrips ellobus and Oncothrips rodwayi: insight into the origin and loss of soldiers in gall-inducing thrips. Ecol Entomol 2002; 27:49–57.CrossRefGoogle Scholar
  12. 12.
    Aoki S. Occurrence of a simple labor in a gall aphid Pemphigus dorocola (Homoptera; Pemphigidae). Kontyu 1980; 48:71–73.Google Scholar
  13. 13.
    Aoki S. Evolution of sterile soldiers in aphids. In: Ito Y, Brown JL, Kikkawa J, eds. Animal Societies: Theories and Facts. Japan: Scientific Societies Press, 1987:53–65.Google Scholar
  14. 14.
    Fletcher DJC, Michener CD. Kin Recognition in Animals. John Wiley and Sons, 1987:476.Google Scholar
  15. 15.
    VanderMeer RK, Breed MD, Winston M et al. Pheromone Communication In Social Insects: Ants, Wasps, Bees and Termites. Westview Press, 1997:384.Google Scholar
  16. 16.
    Starks PT. Recognition systems: from components to conservation. Ann Zool Fennici 2004; 41: 689–690.Google Scholar
  17. 17.
    Penn DJ. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 2002; 108:1–21.CrossRefGoogle Scholar
  18. 18.
    Moore AM, Breed MD, Moor MJ. The guard honey bee; ontogeny and behavioral variability of workers performing a specialized task. Anim Behav 1987; 35:1159–1167.CrossRefGoogle Scholar
  19. 19.
    Breed MD, Buchwald R. Cue diversity and social recognition. In: Gadau J, Fewell JH, eds. Organization of Insect Societies. Harvard University Press, 2008:171–192.Google Scholar
  20. 20.
    Breed MD, Guzmán-Novoa E, Hunt GJ. Defensive behavior of honey bees: organization, genetics and comparisons with other bees. Ann Rev Entomol 2004; 49:271–298.CrossRefGoogle Scholar
  21. 21.
    H ölldobler B. Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav Ecol Sociobiol 1976; 1:3–44.CrossRefGoogle Scholar
  22. 22.
    Breed MD, Deng XB, Buchwald R. Comparative nestmate recognition in Asian honey bees, Apis florea, Apis andreniformis, Apis dorsata and Apis cerana. Apidologie 2007; 38:411–418.CrossRefGoogle Scholar
  23. 23.
    Bourke AFG, Heinze J. The ecology of communal breeding-the case of multiple-queen leptothoracine ants. Phil Trans Roy Soc London Series B-Bio Sci 1994:359–372.Google Scholar
  24. 24.
    DeHeer CJ, Herbers JM. Population genetics of the socially polymorphic ant Formica podzolica. Insectes Soc 2004; 51:309–316.CrossRefGoogle Scholar
  25. 25.
    Holway DA, Suarez AV. Animal behavior: an essential component of invasion biology. Trends Ecol Evol 1999; 14:328–330.PubMedCrossRefGoogle Scholar
  26. 26.
    Tibbetts EA. Visual signals of individual identity in the paper wasp Polistes fuscatus. Proc R Soc Lond B Biol Sci 2002; 269:1423–1428.CrossRefGoogle Scholar
  27. 27.
    Breed MD, Bennett B. Kin recognition in highly eusocial insects. In: Fletcher DJC, Michener CD, eds. Kin Recognition. New York: John Wiley, 1987:243–285.Google Scholar
  28. 28.
    Crosland MWJ. Kin recognition in the ant Rhytidoponera confusa. Anim Behav 1989; 37:912–919.CrossRefGoogle Scholar
  29. 29.
    Crosland MWJ. Kin recognition in the ant Rhytidoponera confusa. Anim Behav 1989; 37:920–926.CrossRefGoogle Scholar
  30. 30.
    Carlin NF, Discrimination between and within colonies of social insects-2 null hypotheses. Netherlands J Zool 1989; 39:86–100.CrossRefGoogle Scholar
  31. 31.
    Boulay R, Hefetz A, Soroker V et al. Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Anim Behav 2000; 59:1127–1133.PubMedCrossRefGoogle Scholar
  32. 32.
    Wicker-Thomas C. Pheromonal communication involved in courtship behavior in Diptera. J Insect Physiol 2007; 53:1089–1100.PubMedCrossRefGoogle Scholar
  33. 33.
    Buchwald R, Breed MD, Bjostad L et al. The role of fatty acids in the mechanical properties of beeswax Apidologie 2009; 40:585–594.CrossRefGoogle Scholar
  34. 34.
    Reeve HK. The evolution of conspecific acceptance thresholds. Am Nat 1989; 133:407–435.CrossRefGoogle Scholar
  35. 35.
    Downs SG, Ratnieks FLW. Adaptive shifts in honey bee (Apis mellifera) guarding behavior support predictions of the acceptance threshold model. Behav Ecol 2000; 11:326–333.CrossRefGoogle Scholar
  36. 36.
    Couvillon MJ, Robinson EJH, Atkinson B et al. En garde: rapid shifts in honeybee, Apis mellifera, guarding behaviour are triggered by onslaught of conspecific intruders. Anim Behav 2008; 76:1653–1658.CrossRefGoogle Scholar
  37. 37.
    Thurin N, Aron S. Seasonal nestmate recognition in the polydomous ant Plagiolepis pygmaea. Anim Behav 2008; 75:1023–1030.CrossRefGoogle Scholar
  38. 38.
    Kudo K, Zucchi R. Nestmate recognition in a neotropical swarm-founding wasp: no effect of seasonality on tolerance of alien conspecifics. Ethology Ecology and Evolution 2008; 20:43–50.CrossRefGoogle Scholar
  39. 39.
    Vander Meer RK, Morel L. Nestmate recognition in ants. In: VanderMeer RK, Breed MD, Espelie KE, Winston ML, eds. Pheromone Communication in Social Insects. Boulder: Westview Press, 1998:79–103.Google Scholar
  40. 40.
    Lacy RC, Sherman PW. Kin recognition by phenotype matching. Am Nat 1983; 121:489–512.CrossRefGoogle Scholar
  41. 41.
    Schausberger P. Kin recognition by juvenile predatory mites: prior association or phenotype matching? Behav Ecol Sociobiol 2007; 62:119–125.CrossRefGoogle Scholar
  42. 42.
    Soroker V, Vienne C, Hefetz A et al. The postpharyngeal gland as a “gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften 1994; 81:510–513.Google Scholar
  43. 43.
    Hefetz A, Errard C, Chambris A et al. Postpharyngeal gland secretion as a modifier of aggressive behavior in myrmicine ant Monica rubida. J Insect Behav 1996; 9:709–717.CrossRefGoogle Scholar
  44. 44.
    Soroker V, Hefetz A, Cojocaru M et al. Structural and chemical ontogeny of the postpharyngeal gland in the desert ant Cataglyphis niger. Physiol Entomol 1995; 20:323–329.CrossRefGoogle Scholar
  45. 45.
    Sorkoer V, Fresneau D, Hefetz A. Formation of colony odor in Ponerine ant Pachycondyla apicalis. J Chem Ecol 1998; 6:1077–1090.CrossRefGoogle Scholar
  46. 46.
    Nelson DR, Blomquist GJ. Insect waxes. In: Hamilton ed. Waxes: Chemistry, Molecular Biology and Functions. Bridgewater: The Oily Press, 1995:1–90.Google Scholar
  47. 47.
    Errard C, LeGuisquet AM, Christides JP et al. Early learning of volatile chemical cues leads to interspecific recognition between two ant species. Insectes Soc 2008; 55:115–122.CrossRefGoogle Scholar
  48. 48.
    Dani FR, Jones GR, Corsi S et al. Nest mate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 2005; 30:1–13.CrossRefGoogle Scholar
  49. 49.
    Martin SJ, Vitikainen E, Helanterä H et al. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc R Soc Lond B Biol Sci 2008; 275:1271–1278.CrossRefGoogle Scholar
  50. 50.
    Martin SJ, Drijfhout FP. (a)Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J Chem Ecol 2009; 35:368–374.PubMedCrossRefGoogle Scholar
  51. 51.
    A kino T, Yamamura K, Wakamura S et al. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Applied Entomology and Zoology 2004; 39:381–387.CrossRefGoogle Scholar
  52. 52.
    Greene MJ, Gordon DM. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J Exp Biol 2007; 210:897–905.PubMedCrossRefGoogle Scholar
  53. 53.
    Bennett B. (a) Nestmate recognition systems in a monogynous-polygynous species pair of ants (Hymenoptera, Formicidae). Sociobiology 1989; 16:121–139.Google Scholar
  54. 54.
    Bennett B. (b) Nestmate recognition systems in a monogynous-polygynous species pair of ants (Hymenoptera, Formicidae). Sociobiology 1989; 16:141–147.Google Scholar
  55. 55.
    Sorvari J, Hakkarainen H. Habitat-related aggressive behaviour between neighbouring colonies of the polydomous wood ant Formica aquilonia. Anim Behav 2004; 67:151–153.CrossRefGoogle Scholar
  56. 56.
    Tanner CJ, Adler FR. To fight or not to fight: how context affects interspecific aggression for competing ants. Anim Behav 2009; 77:297–305.CrossRefGoogle Scholar
  57. 57.
    Tanner CJ. Resource characteristics and competition affect colony and individual foraging strategies of the wood ant Formica integroides. Ecol Entomol 2008; 33:127–136.CrossRefGoogle Scholar
  58. 58.
    Tanner CJ, Aggressive group behavior in the ant Formica xerophila is co-ordinated by direct nestmate contact. Anim Behav 2008; 76:1335–1341.CrossRefGoogle Scholar
  59. 59.
    Holway DA, Lach L, Suarez AV et al. The causes and consequences of ant invasions. Annu Rev Ecol Syst 2002; 33:181–233.CrossRefGoogle Scholar
  60. 60.
    Suarez AV, Tsutsui ND, Holway DA et al. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1999; 1:43–53.CrossRefGoogle Scholar
  61. 61.
    Tsutsui ND, Suarez AV, Holway DA et al. Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 2000; 97:5948–5953.PubMedCrossRefGoogle Scholar
  62. 62.
    Pedersen JS, Krieger MJB, Vogel V et al. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 2006; 60:782–791.PubMedGoogle Scholar
  63. 63.
    Giraud T, Pedersen JS, Keller L. Evolution of supercolonies: the Argentine ants of southern Europe. Proc Nat Acad Sci USA 2002; 99:6075–6079.PubMedCrossRefGoogle Scholar
  64. 64.
    Tsutsui ND, Suarez AV, Grosberg RK. Genetic diversity, asymmetrical aggression and recognition in a widespread invasive species. Proc Nat Acad Sci USA 2003; 100:1078–1083.PubMedCrossRefGoogle Scholar
  65. 65.
    Brandt M, Van Wilgenburg E, Tsutsui ND. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol Ecol 2009; 18:997–1005.PubMedCrossRefGoogle Scholar
  66. 66.
    Torres CW, Brandt M, Tsutsui ND. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insectes Soc 2007; 54:363–373.CrossRefGoogle Scholar
  67. 67.
    Vasquez GM, Schal C, Silverman J. Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J Chem Ecol 2009; 35:922–932.PubMedCrossRefGoogle Scholar
  68. 68.
    Liang D, Silverman J. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 2000; 87:412–416.PubMedCrossRefGoogle Scholar
  69. 69.
    Liang D, Blomquist GJ, Silverman J. Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:871–882.PubMedCrossRefGoogle Scholar
  70. 70.
    Buczkowski G, Silverman J. Geographical variation in Argentine ant aggression behaviour mediated by environmentally derived nestmate recognition cues. Anim Behav 2006; 71:327–335.CrossRefGoogle Scholar
  71. 71.
    Breed MD. Recognition pheromones of the honey bee. Bioscience 1998; 48:463–470.CrossRefGoogle Scholar
  72. 72.
    Tulloch AP. Beeswax-composition and analysis. Bee World 1980; 61:47–62.Google Scholar
  73. 73.
    Buchwald R, Breed MD, Greenberg AR et al. Interspecific variation in beeswax as a biological construction material. J Exp Biol 2006; 209:3984–3989.PubMedCrossRefGoogle Scholar
  74. 74.
    Buchwald R, Breed MD, Greenberg AR. The thermal properties of beeswaxes: unexpected findings. J Exp Biol 2008; 211:121–127.PubMedCrossRefGoogle Scholar
  75. 75.
    Espelie KE, Gamboa GJ, Grudzien A et al. Cuticular hydrocarbons of the paper wasp, Polistes fuscatus: a search for recognition pheromones. J Chem Ecol 1994; 20:677–687.CrossRefGoogle Scholar
  76. 76.
    Butts DP, Camann MA, Espelie KE. Workers and queens of the European Hornet Vespa crabo L have colony-specific hydrocarbon profiles (Hymenoptera, Vspidae). Insect Soc 1995; 42:45–55.CrossRefGoogle Scholar
  77. 77.
    Dani FR. Cuticular lipids as semiochemicals in paper wasps and other social insects. Ann Zool Fenn 2006; 43:500–514.Google Scholar
  78. 78.
    Dapporto L, Fondelli L, Turillazzi S. Nestmate recognition and identification of cuticular hydrocarbons composition in the swarm founding paper wasp Ropalidia opifex. Biochem Syst Ecol 2006; 34:617–625.CrossRefGoogle Scholar
  79. 79.
    Dani FR, Jones GR, Destri S et al. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 2001; 62:165–171.CrossRefGoogle Scholar
  80. 80.
    Gamboa GJ, Grudzien TA, Espelie KE et al. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Anim Behav 1996; 51:625–629.CrossRefGoogle Scholar
  81. 81.
    Singer TL, Espelie KE. Social wasps use nest paper hydrocarbons for nestmate recognition. Anim Behav 1992; 44:63–68.CrossRefGoogle Scholar
  82. 82.
    Butts DP, Espelie KE. Role of nest paper hydrocarbons in nestmate recognition of Dolichovespula maculata (L) workers (Hymenoptera, Vespidae). Ethology 1995; 100:39–49.CrossRefGoogle Scholar
  83. 83.
    Tibbetts EA. Complex social behavior can select for variable visual features: a case study in Polistes wasps. Proc R Soc Lond B Biol Sci 2004; 271:1955–1960.CrossRefGoogle Scholar
  84. 84.
    Howard RW. Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR, eds. Insect Lipids: Chemistry, Biochemistry and Biology. Lincoln: Univ Nebraska Press, 1993:179–226.Google Scholar
  85. 85.
    Jmhasly P, Brandl R, Leuthold RH et al. Aggression and cuticular hydrocarbon profiles in a termite. Zoology 1998; 101:11.Google Scholar
  86. 86.
    Kaib M, Franke S, Francke W et al. Cuticular hydrocarbons in a termite: phenotypes and a neighbour-stranger effect. Physiol Entomol 2002; 27:189–198.CrossRefGoogle Scholar
  87. 87.
    Su NY, Haverty MI. Agnostic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: lack of correlation with cuticular hydrocarbon composition. J Insect Behav 1991; 4:115–128.CrossRefGoogle Scholar
  88. 88.
    Florane CB, Bland JM, Husseneder C et al. Diet mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J Chem Ecol 2004; 30:2259–2574.CrossRefGoogle Scholar
  89. 89.
    Matsuura K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Nordic Society Oikos 2001; 92:20–26.CrossRefGoogle Scholar
  90. 90.
    Akino T. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): description of new very long chained hydrocarbon components. Applied Entomology and Zoology 2006; 41:667–677.CrossRefGoogle Scholar
  91. 91.
    Martin SJ, Drijfhout FP. (b)How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? J Chem Ecol 2009; 35:375–382.PubMedCrossRefGoogle Scholar
  92. 92.
    Roulston TH, Buczkowski G, Silverman J. Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Soc 2003; 50:151–159.CrossRefGoogle Scholar
  93. 93.
    d’Ettorre P, Heinze J, Schulz C et al. Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant Pachycondyla inversa. J Exp Biol 2004; 207:1085–1091.PubMedCrossRefGoogle Scholar
  94. 94.
    Ozaki M, Wada-Katsumata A, Fujikawa K et al. Ant nestmate and nonnestmate discrimination by a chemosensory sensillum. Science 2005; 309:311–314.PubMedCrossRefGoogle Scholar
  95. 95.
    Batista-Pereira G, Dos Santos MG, Corrêa AC. Electroantennographic responses of Heterotermes tenuis (Isoptera: Rhinotermitidae) to synthetic (3Z,6Z,8E)-Dodecatrien-1-ol. J Braz Chem Soc 2004; 15:372–377.CrossRefGoogle Scholar
  96. 96.
    Richard FJ, Aubert A, Grozinger CM. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 2008; 6:Article number 50.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyThe University of ColoradoBoulderUSA

Personalised recommendations