Skip to main content

The Evolution of Vertebrate Color Vision

  • Chapter
Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

Color vision is conventionally defined as the ability of animals to reliably discriminate among objects and lights based solely on differences in their spectral properties. Although the nature of color vision varies widely in different animals, a large majority of all vertebrate species possess some color vision and that fact attests to the adaptive importance this capacity holds as a tool for analyzing the environment. In recent years dramatic advances have been made in our understanding of the nature of vertebrate color vision and of the evolution of the biological mechanisms underlying this capacity. In this chapter I review and comment on these advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson JM. Photosynthesis in the Archean era. Photosyn Res 2006; 88:109–117.

    Article  PubMed  CAS  Google Scholar 

  2. Hoashi M, Bevacqua DC, Otake T et al. Primary heamatite formation in an oxygenated sea 3.46 billion years ago. Nature Geosci 2009; 2:301–306.

    Article  CAS  Google Scholar 

  3. Green BR. Was “molecular opportunism” a factor in evolution of photosynthetic light-harvesting systems? Proc Natl Acad Sci USA 2001; 98:2119–2121.

    Article  PubMed  CAS  Google Scholar 

  4. Hardin CL. Color for Philosophers. Indianapolis: Hackett Publishing Company, 1988.

    Google Scholar 

  5. Newton I. Optics: Dover, 1952 edition, 1730.

    Google Scholar 

  6. Jacobs GH. The distribution and nature of colour vision among the mammals. Biol Rev 1993; 68:413–471.

    Article  PubMed  CAS  Google Scholar 

  7. Kelber A, Vorobyev M, Osorio D. Animal colour vision—behavioural tests and physiological concepts. Biol Rev 2003; 78:81–118.

    Article  PubMed  Google Scholar 

  8. Skorupski P, Chittka L. Is colour cognitive? Opt Laser Tech 2011; 43:251–260.

    Article  Google Scholar 

  9. Jacobs GH, Rowe MP. Evolution of vertebrate colour vision. Clin Exptl Optom 2004; 87:206–216.

    Article  Google Scholar 

  10. Neitz J, Carroll J, Neitz M. Color vision: almost reason enough for having eyes. Opt Photon News 2001; 12:26–33.

    Article  Google Scholar 

  11. Lythgoe JN. The Ecology of Vision. New York: Oxford University Press, 1979:244.

    Google Scholar 

  12. Jacobs GH. Comparative Color Vision. New York: Academic Press, 1981.

    Google Scholar 

  13. Mollon JD. “Tho she kneel’d in that place where they grew.” The uses and origins of primate colour vision. J Exptl Bio 1989; 146:21–38.

    CAS  Google Scholar 

  14. Wensel TG. Signal transducing membrane complexes of photoreceptor outer segments. Vis Res 2008; 48:2052–2061.

    Article  PubMed  CAS  Google Scholar 

  15. Solomon SG, Lennie P. The machinery of colour vision. Nat Neurosci Rev 2007; 8:276–286.

    Article  CAS  Google Scholar 

  16. Nathans J, Hogness DS. Isolation, sequence analysis and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 1983; 34:807–814.

    Article  PubMed  CAS  Google Scholar 

  17. Yokoyama S. Evolution of dim-light and color vision pigments. Annual Review of Genom Hum Genet 2009; 9:259–282.

    Article  Google Scholar 

  18. Yokoyama S, Radlwimmer FB. The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 2001; 158:1697–1710.

    PubMed  CAS  Google Scholar 

  19. Carroll J, Jacobs GH. Mammalian photopigments. In: Masland RH, Albright TD, eds. The Senses: A Comprehensive Reference. New York: Elsevier, 2008; 247–268.

    Chapter  Google Scholar 

  20. Dartnall HJA. Identity and distribution of visual pigments in the animal kingdom. In: Davson H, ed. The Visual Process. New York: Academic Press, 1962; 367–425.

    Google Scholar 

  21. Bowmaker JK. Evolution of vertebrate visual pigments. Vis Res 2008; 48:2022–2041.

    Article  PubMed  CAS  Google Scholar 

  22. Douglas RH, Marshall NJ. A review of vertebrate and invertebrate ocular filters. In: Archer SN, Djamgoz MBA, Loew ER et al, eds. Adaptive Mechanisms in the Ecology of Vision. Dordrecht: Kluwer Academic Publishers, 1999; 95–162.

    Google Scholar 

  23. Vorobyev M. Coloured oil droplets enhance colour discrimination. Proc Roy Soc Lond B 2003; 270: 1255–1261.

    Article  Google Scholar 

  24. Lamb TD, Collin SP, Pugh ENJ. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye-cup. Nat Rev Neurosci 2007; 8:960–975.

    Article  PubMed  CAS  Google Scholar 

  25. Collin SP, Knight MA, Davies WL et al. Ancient colour vision: multiple opsin genes in ancestral vertebrates. Curr Biol 2003; 13:R864–R865.

    Article  PubMed  CAS  Google Scholar 

  26. Collin S, Davies W, Hunt D. The evolution of early vertebrate photoreceptors. Phil Trans Roy Soc Lond B 2009; 364:2925–2940.

    Article  CAS  Google Scholar 

  27. Maximov VV. Environmental factors which may have led to the appearance of colour vision. Phil Trans Roy Soc Lond B 2000; 355:1239–1242.

    Article  CAS  Google Scholar 

  28. Kuraku S, Meyer A, Kuratani S. Timing of genome duplications relative to the origin of vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 2009; 26:47–59.

    Article  PubMed  CAS  Google Scholar 

  29. Parry JWL, Carleton KL, Spady T et al. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol 2005; 15:1734–1739.

    Article  PubMed  CAS  Google Scholar 

  30. Barlow HB. What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vis Res 1982; 22:635–643.

    Article  PubMed  CAS  Google Scholar 

  31. Osorio D, Bossomaier TRJ. Human cone pigment spectral sensitivities and the reflectances of natural surfaces. Biol Cyber 1992; 67:217–222.

    Article  CAS  Google Scholar 

  32. Howard J, Blakeslee B, Laughlin SB. The intracellular pupil mechanism and photoreceptor signal-noise ratio in the fly Lucilla cuprina. Proc Roy Soc Lond B 1987; 231:415–435.

    Article  CAS  Google Scholar 

  33. Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exptl Biol 2008; 211:1792–1804.

    Article  CAS  Google Scholar 

  34. Mollon JD, Estevez O, Cavonius CR. The two subsystems of colour vision and their roles in wavelength discrimination. In: Blakemore C, ed. Vision: Coding and Efficiency. Cambridge: Cambridge University Press, 1990:119–131.

    Google Scholar 

  35. Hunt DM, Carvalho LS, Cowing JA et al. Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol 2007; 83:303–310.

    Article  PubMed  CAS  Google Scholar 

  36. Hunt D, Carvalho LS, Cowing JA et al. Evolution and spectral tuning of visual pigments in birds and mammals. Phil Trans Roy Soc Lond B 2009; 364:2941–2955.

    Article  CAS  Google Scholar 

  37. Sterling P. How retinal circuits optimize the transfer of visual information. In: Chalupa LM, Werner JS, eds. The Visual Neurosciences. Boston: MIT Press, 2004:234–259.

    Google Scholar 

  38. Okano T, Kojima D, Fukada Y et al. Primary structures of chicken visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 1992; 89:5932–5936.

    Article  PubMed  CAS  Google Scholar 

  39. Makous W. Scotopic Vision. In: Chalupa LM, Werner JS, eds. The Visual Neurosciences. Cambridge: MIT Press, 2004:838–850.

    Google Scholar 

  40. LaVail MM. Survival of some photoreceptors in albino rats following long-term exposure to continuous light. Invest Ophthal Vis Sci 1976; 15:64–70.

    CAS  Google Scholar 

  41. Muller B, Peichl L. Topography of cones and rods in the tree shrew retina. J Comp Neurol 1989; 282:581–594.

    Article  PubMed  CAS  Google Scholar 

  42. Steiper ME, Ruvolo M. New World monkey phylogeny based on X-linked G6PD DNA sequences. Mol Phylogenet Evol 2003; 27:121–130.

    Article  PubMed  CAS  Google Scholar 

  43. Finlay BL. The developing and evolving retina: using time to organize form. Br Res 2007; 1192:5–16.

    Article  Google Scholar 

  44. Dyer MA, Martins R, Filho MS et al. Developmental sources of conservation and variation in the evolution of the primate eye. Proc Natl Acad Sci USA 2009; 106:8963–8968.

    Article  PubMed  CAS  Google Scholar 

  45. Yokoyama S. Molecular evolution of color vision in vertebrates. Gene 2002; 300:69–78.

    Article  PubMed  CAS  Google Scholar 

  46. Lamb TD, Pugh ENJ, Collin SP. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye-cup. Nat Rev Neurosci 2007; 8:960–975.

    Article  PubMed  CAS  Google Scholar 

  47. Yokoyama S. Evolution of dim-light and color vision pigments. Ann Rev Genom Hum Genet 2008; 9:259–282.

    Article  CAS  Google Scholar 

  48. Hunt DM, Carvalho LS, Cowing JA et al. Evolution and spectral tuning of visual pigments in birds and mammals. Phil Trans Roy Soc Lond B 2009; 364:2941–2956.

    Article  CAS  Google Scholar 

  49. Collin SP, Davies WL, Hart NS et al. The evolution of early vertebrate photoreceptors. Phil Trans Roy Soc Lond B 2009; 364:2925–2940.

    Article  CAS  Google Scholar 

  50. Jacobs GH. Evolution of colour vision in mammals. Phil Trans Roy Soc Lond B 2009; 364:2957–2967.

    Article  CAS  Google Scholar 

  51. Kemp TS. The Origin and Evolution of Mammals. Oxford, UK: Oxford University Press, 2005.

    Google Scholar 

  52. Davies WL, Caravalho LS, Cowing JA et al. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 2007; 17:B161–B163.

    Article  Google Scholar 

  53. Wakefield MJ, Anderson M, Chang E et al. Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci 2008; 25:257–264.

    Article  PubMed  Google Scholar 

  54. Hemmi JM. Dichromatic colour vision in an Australian marsupial, the tammar wallaby. J Comp Physiol A 1999; 185:509–515.

    Article  PubMed  CAS  Google Scholar 

  55. Hemmi JM, Maddess T, Mark RF. Spectral sensitivity of photoreceptors in an Australian marsupial, the tammar wallaby (Macropus eugenii). Vis Res 2000; 40:591–599.

    Article  PubMed  CAS  Google Scholar 

  56. Arrese CA, Hart NS, Thomas N et al. Trichromacy in Australian marsupials. Curr Biol 2002; 12:657–660.

    Article  PubMed  CAS  Google Scholar 

  57. Arrese CA, Beazley LD, Neumeyer C. Behavioural evidence of marsupial trichromacy. Curr Biol 2006; 16:R193–R194.

    Article  PubMed  CAS  Google Scholar 

  58. Cowing JA, Arrese CA, Davies WL et al. Cone visual pigmens in two marsuial species: the fat-tailed dunnart (Sminthopsis crassicaudatus) and the honey possum (Tarsipes rostratus). Proc Roy Soc Lond B 2008; 275:1491–1499.

    Article  CAS  Google Scholar 

  59. Hunt DM, Wilkie SE, Bowmaker JK et al. Vision in the ultraviolet. Cell Mol Life Sci 2001; 58:1583–1598.

    Article  PubMed  CAS  Google Scholar 

  60. Yokoyama S, Yang H, Starmer WT. Molecular basis of spectral tuning in the red-and green-sensitive (M/LWS) pigments in vertebrates. Genetics 2008; 179:2037–2041.

    Article  PubMed  Google Scholar 

  61. Chiao C-C, Vorobyev M, Cronin TW et al. Spectral tuning of dichromats to natural scenes. Vis Res 2000; 40:3257–3271.

    Article  PubMed  CAS  Google Scholar 

  62. Jacobs GH, Deegan JF II, Neitz JA et al. Photopigments and color vision in the nocturnal monkey, Aotus. Vis Res 1993; 33:1773–1783.

    Article  CAS  Google Scholar 

  63. Deegan JF II, Jacobs GH. Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus). Amer J Primatol 1996; 40:55–66.

    Article  Google Scholar 

  64. Jacobs GH, Neitz M, Neitz J. Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc Roy Soc Lond B 1996; 263:705–710.

    Article  CAS  Google Scholar 

  65. Peichl L. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A 2005; 287A:1001–1012.

    Article  CAS  Google Scholar 

  66. Levenson DH, Dizon A. Genetic evidence for the ancestral loss of SWS cone pigments in mysticetee and odontocete cetaceans. Proc Roy Soc Lond B 2003; 270:673–679.

    Article  CAS  Google Scholar 

  67. Levenson DH, Ponganis PJ, Crognale MA et al. Visual pigments of marine carnivores: pinnipeds, polar bear and sea otter. J Comp Physiol A 2006; 192:833–843.

    Article  CAS  Google Scholar 

  68. Go Y, Satta Y, Takenaka O et al. Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 2005; 176:313–326.

    Article  Google Scholar 

  69. Jacobs GH. Recent progress in understanding mammalian color vision. Ophthal Physiol Optics 2010: 30(5):422–34.

    Article  Google Scholar 

  70. Steiper ME, Young MM. Primate molecular divergence dates. Molr Phylogenet Evol 2006; 41:384–394.

    Article  CAS  Google Scholar 

  71. Martin RD, Ross CF. The evolutionary and ecological context of primate vision. In: Kremers J, ed. The Primate Visual System: A Comparative Approach. West Sussex: John Wiley and Sons, Ltd., 2005.

    Google Scholar 

  72. Nathans J. Molecular biology of visual pigments. Ann Rev Neurosci 1987; 10:163–194.

    Article  PubMed  CAS  Google Scholar 

  73. Nathans J, Piantanida TP, Eddy RL et al. Molecular genetics of inherited variation in color vision. Science 1986; 233:203–210.

    Article  Google Scholar 

  74. Jacobs GH. Primate color vision: a comparative perspective. Vis Neurosci 2007; 25:619–633.

    Article  Google Scholar 

  75. Jacobs GH, Williams GA. The prevalence of defective color vision in Old World monkeys and apes. Color Res Appl 2001; 26:S123–S127.

    Article  Google Scholar 

  76. Jacobs GH. New World monkeys and color. Internat J Primatol 2007; 28:729–759.

    Article  Google Scholar 

  77. Jacobs GH, Neitz J. Inheritance of color vision in a New World monkey (Saimiri sciureus). Proc Natl Acad Sci USA 1987; 84:2545–2549.

    Article  PubMed  CAS  Google Scholar 

  78. Mollon JD, Bowmaker JK, Jacobs GH. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc Roy Soc Lond B 1984; 222:373–399.

    Article  CAS  Google Scholar 

  79. Surridge AK, Osorio D, Mundy NI. Evolution and selection of trichromatic vision in primates. Trends Ecol Evolut 2003; 18:198–206.

    Article  Google Scholar 

  80. Jacobs GH, Deegan JF II. Photopigments and colour vision in New World monkeys from the family Atelidae. Proc Roy Soc Lond B 2001; 268:695–702.

    Article  CAS  Google Scholar 

  81. Jacobs GH, Neitz M, Deegan JF et al. Trichromatic colour vision in New World monkeys. Nature 1996; 382:156–158.

    Article  PubMed  CAS  Google Scholar 

  82. Hunt DM, Dulai KS, Cowing JA et al. Molecular evolution of trichromacy in primates. Visi Res 1998; 38:3299–3306.

    Article  CAS  Google Scholar 

  83. Jacobs GH, Deegan II JF. Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). Amer J Primatol 1993; 30:243–256.

    Article  Google Scholar 

  84. Tan Y, Li W-H. Trichromatic vision in prosimians. Nature 1999; 402:36.

    Article  PubMed  CAS  Google Scholar 

  85. Jacobs GH, Deegan JF II, Tan Y et al. Opsin gene and photopigment polymorphism in a prosimian primate. Vis Res 2002; 42:11–18.

    Article  PubMed  CAS  Google Scholar 

  86. Land MF, Nilsson D-E. Animal Eyes. New York: Oxford University Press, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jacobs, G.H. (2012). The Evolution of Vertebrate Color Vision. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_10

Download citation

Publish with us

Policies and ethics