Skip to main content

Abstract

Forma of nontransient adherent communities of microorganisms on submerged surfaces (biofilm) is a ubiquitous phenomenon. Over 9% of the all aquatic bacteria are found associated with interfaces such as the sediment–water interface and surface micro-layer of aquatic systems. “Biofilms constitute a consortium of biotic elements like bacteria, cyanobacteria and algae attached to a substratum by microbially produced extracellular polysaccharide matrix which entraps soluble and particulate matter, immobilizes extracellular enzymes and acts as a sink for nutrients and inorganic elements.” The biofilm composition may vary both spatially and temporally with respect to different waters, and greatest differences are usually associated with shifts in the relative importance of autotrophic and heterotrophic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu GO, Weiner RM, Rice J, Colwell RR (1991) Properties of an extracellular adhesive polymer from the marine bacterium Shewanella colwelliana. Biofouling 3:69–84

    Article  CAS  Google Scholar 

  • Allison DG, Gilbert P (1992) Bacterial biofilms. Sci Prog 76:305–321

    Google Scholar 

  • Allison DG, Sutherland IW (1987) The role of exopolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133:1319–1327

    CAS  Google Scholar 

  • Angell P (1999) Understanding microbially influenced corrosion as biofilm mediated changes in surface chemistry. Curr Opin Biotechnol 10:269–272

    Article  CAS  Google Scholar 

  • Bott TR (1993) Aspects of biofilm formation and destruction. Corrosion Rev 11:1–24

    Article  CAS  Google Scholar 

  • Bott TR (1995) Fouling of heat exchangers. Elsevier, New York

    Google Scholar 

  • Busscher HJ, Weerkamp AH (1987) Specific and nonspecific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Rev 46:165–173

    Article  CAS  Google Scholar 

  • Busscher HJ, Bellon-Fontaine M, Mozes N, Van der Mei HC, Sjollema J, Rouxhet PG (1990) Deposition of Leuconostoc mesenteriodes and Streptococcus thermophilus to solid substrata in a parallel plate flow cell. Biofouling 2:55–63

    Article  Google Scholar 

  • Casillas N, Charlebois SJ, Smyrl WH, White HS (1994) Pitting corrosion of titanium. J Electrochem Soc 141:636–654

    Article  CAS  Google Scholar 

  • Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Adv Appl Microbiol 29:93–138

    Article  CAS  Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms. Wiley, New York

    Google Scholar 

  • Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotechnol 10:181–202

    Article  CAS  Google Scholar 

  • Clare AS (1998) Towards nontoxic antifouling. J Mar Biotechnol 6:3–6

    CAS  Google Scholar 

  • Costello AJ (1969) The corrosion of metals by microorganisms: a literature survey. Int Biodeter Bull 5:118–191

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 45:711–745

    Article  Google Scholar 

  • Cowan M, Warren TM, Fletcher M (1991) Mixed species colonisation of solid surfaces in laboratory biofilms. Biofouling 3:23–36

    Article  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski H, Costerton JW, Greenberg EP (1998) The involvement of cell to cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  Google Scholar 

  • Dendro NC (1975) The Sphaerotilus-Leptothrix group. Annu Rev Microbiol 29:407–428

    Article  Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterisation of novel iron oxidising bacteria that grow at circum neutral pH. Appl Environ Microbiol 63:4784–4792

    CAS  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems—cases, causes, countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  Google Scholar 

  • Fletcher M, Lessmann JM, Loeb GI (1991) Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria. Biofouling 4:129–140

    Article  CAS  Google Scholar 

  • Gaines RH (1910) Bacterial activity as a corrosive influence in the soil. J Eng Ind Chem 2:128–130

    Article  Google Scholar 

  • Garrett JH (1891) The action of water on lead. Lewis Publishers, London

    Google Scholar 

  • Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. Am Soc Microbiol News 48:9–14

    Google Scholar 

  • George RP, Muraleedharan P, Paravathavarthini N, Khatak HS, Rao TS (2000) Microbiologically influenced corrosion of AISI type 304 stainless steel under freshwater biofilm. Mater Corros 51:1–6

    Article  Google Scholar 

  • Ghiorse WC (1984) Biology of iron and manganese depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  CAS  Google Scholar 

  • Gibson GR (1990) Physiology and ecology of the sulphate reducing bacteria. J Appl Bacteriol 69:769–797

    Article  CAS  Google Scholar 

  • Girguis PR, Cozen A, DeLong EE (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725–3733

    Article  CAS  Google Scholar 

  • Hamilton WA (1985) Sulfate reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  • Hoagland KD, Zlotsky A, Peterson CG (1986) The source of algal colonisers on rock substrates in a fresh water impoundment. In: Evans LV, Hoagland KD (eds) Algal biofouling. Elsevier, Amsterdam, pp 21–39

    Chapter  Google Scholar 

  • Iverson WP (1987) Microbial corrosion of metals. Adv Appl Microbiol 32:1–36

    Article  CAS  Google Scholar 

  • Karlsson J, Eklund B (2004) New biocide-free anti-fouling paints are toxic. Mar Pollut Bull 49:456–464

    Article  CAS  Google Scholar 

  • Keiding K, Nielsen PH (1997) Desorption of organic macromolecules from activated sludge: effect of ionic composition. Water Res 31:1665–1672

    Article  CAS  Google Scholar 

  • Khatak HS, Gnanamoorthy JB, Rodriguez P (1985) Failure analysis of an admiralty brass condenser tube. Pract Met 22:99–115

    CAS  Google Scholar 

  • Lappin-Scott HW, Costerton JW (1989) Bacterial biofilms and surface fouling. Biofouling 1:323–331

    Article  CAS  Google Scholar 

  • Lawrence JR, Caldwell DE (1987) Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 14:15–27

    Article  Google Scholar 

  • Lawrence JR, Delaquis PJ, Korber DR, Caldwell DE (1987) Behaviour of Pseudomonas fluorescens within the boundary layers of surface microenvironments. Microbiol Ecol 14:1–14

    Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulphate reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Licina GJ (1989) An overview of microbiologically influenced corrosion in nuclear power plant systems. Mater Perform 28:55–60

    CAS  Google Scholar 

  • Little B, Wagner P (1996) An overview of microbiologically influenced corrosion of metals and alloys used in the storage of nuclear wastes. Can J Microbiol 42:367–374

    Article  CAS  Google Scholar 

  • Little B, Wagner P, Mansfeld F (1991) Microbially influenced corrosion of metals and alloys. Int Mater Rev 36:253–272

    CAS  Google Scholar 

  • Liu D, Lau YL, Chau YK, Pacepavicius GJ (1993) Characterisation of biofilm development on artificial substratum in natural water. Water Res 27:361–367

    Article  CAS  Google Scholar 

  • Loeb GI, Neihof RA (1977) Adsorption of an organic film at platinum seawater interface. J Mar Res 5:283–291

    Google Scholar 

  • Marshall KC (1980) Microorganisms and interfaces. BioScience 30:246–249

    Article  Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  • Morales J, Esparaza P, Gonzalez S, Salvarezza R, Arevalo MP (1993) The role of Pseudomonas aeruginosa on the localised corrosion of SS-304. Corros Sci 34:1531–1540

    Article  CAS  Google Scholar 

  • Mueller RF, Characklis WG, Jones WL, Sears JT (1992) Characterisation of initial events in bacterial surface colonisation by two Pseudomonas sp using image analysis. Biotechnol Bioeng 39:1161–1170

    Article  CAS  Google Scholar 

  • Mulder EG (1989) Genus Leptothrix. In: Staley JT, Bryant MP, Pfennig N, Holt JE (eds) Bergey’s manual of systematic bacteriology: 3. Williams & Wilkins, Baltimore, pp 1998–2003

    Google Scholar 

  • Mulder EG, Deinema MH (1986) The sheathed bacteria. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes: I. A handbook on habitat, isolation and identification of bacteria. Springer, Berlin, pp 425–515

    Google Scholar 

  • Pankhania IP (1988) Hydrogen metabolism in sulfate reducing bacteria and its role in anaerobic corrosion. Biofouling 1:27–47

    Article  CAS  Google Scholar 

  • Peck HD, LeGall J (1982) Biochemistry of dissimilatory sulfate reduction. Phil Trans R Soc Lond B 298:443–466

    Article  CAS  Google Scholar 

  • Pedersen K (1982) Factors regulating microbial biofilm development in a system with slowly flowing seawater. Appl Environ Microbiol 44:1196–1204

    CAS  Google Scholar 

  • Pope DH, Duquette DJ, Johannes AH, Wayner PC (1984) Microbiologically influenced corrosion of industrial alloys. Mater Perform 23:14–22

    CAS  Google Scholar 

  • Postgate JR (1984) Genus Desulfovibrio. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology: I. Williams & Wilkins, Baltimore, pp 666–672

    Google Scholar 

  • Rao TS (2003) Temporal variations in an estuarine biofilm: with emphasis on nitrate reduction. Estuar Coast Shelf Sci 56:1–9

    Article  Google Scholar 

  • Rao TS, Nair KVK (1998) Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater. Corros Sci 40:1821–1836

    Article  CAS  Google Scholar 

  • Rao TS, Eswaran MS, Venugopalan VP, Nair KVK, Mathur PK (1993) Fouling and corrosion in an open recirculating cooling system. Biofouling 6:245–259

    Article  Google Scholar 

  • Rao TS, Rani PG, Venugopalan VP, Nair KVK (1997a) Biofilm formation in a fresh water impoundment under experimental photic and aphotic conditions. Biofouling 11:265–282

    Article  CAS  Google Scholar 

  • Rao TS, Kesavamoorthy R, Rao CB, Nair KVK (1997b) Influence of flow on ordering characteristics of a bacterial biofilm. Curr Sci 73:69–74

    Google Scholar 

  • Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000) Carbon steel corrosion by iron oxidising and sulfate bacteria in a freshwater cooling system. Corros Sci 42:1417–1431

    Article  CAS  Google Scholar 

  • Rao TS, Aruna Jyothi K, Anupkumar B, Narasimhan SV, Feser R (2005) Pitting corrosion of titanium by a freshwater strain of sulfate reducing bacteria (Desulfovibrio vulgaris). Corros Sci 47:1071–1084

    Article  CAS  Google Scholar 

  • Rao TS, Hiren Joshi M, Venugopalan VP, Mohana Krishnan G, Anand Babu C, Narasimhan SV (2007) Microfouling problem in acid transfer unit of boron plant. BARC Newsl 287:14–18

    Google Scholar 

  • Robb ID (1984) Stereo—biochemistry and function of polymers. In: Marshall KC (ed) Microbial adhesion and aggregation. Dahlem conference on adhesion. Springer, New York, pp 39–50

    Chapter  Google Scholar 

  • Saravanan P, Nancharaiah YV, Venugopalan VP, Rao TS, Jayachandran S (2006) Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine. Biofouling 22:1–11

    Article  Google Scholar 

  • Schippers A, Jozsa PG, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431

    CAS  Google Scholar 

  • Schutz RW (1991) A case for titanium’s resistance to microbiologically influenced corrosion. Mat Perform 30:58–61

    CAS  Google Scholar 

  • Seed LJ (1990) The significance of organisms in corrosion. Corr Rev 9:3–101

    Google Scholar 

  • Sjollema J, Busscher HJ (1990) Deposition of polystyrene particles in a parallel plate flow cell: 2 Pair distribution functions between deposited particles. Colloids Surf 47:337–352

    Article  CAS  Google Scholar 

  • Srivastava RB, Gaonkar SN, Karande AA (1990) Biofilm characterisation in coastal waters of Bombay. Proc Indian Natl Acad Sci (Anim Sci) 99:163–173

    Article  CAS  Google Scholar 

  • Stewart PS, Peyton BM, Drury WJ, Murga R (1993) Quantitative observation of heterogeneties in Pseudomonas aeruginosa biofilm. Appl Environ Microbiol 59:327–329

    CAS  Google Scholar 

  • Stewart PS, Camper AK, Handran SD, Huang CT, Warnecke M (1997) Spatial distribution and co-existence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10

    Article  Google Scholar 

  • Sutherland IW (1997) Microbial polysaccharides—structural subtleties and their consequences. Pure Appl Chem 69:1911–1917

    Article  CAS  Google Scholar 

  • Syrett BC, Coit RL (1983) Causes and prevention of power plant condenser tube failures. Mat Perform 23:44–50

    Google Scholar 

  • Tiedje JM (1988) Ecology of nitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–244

    Google Scholar 

  • Tiller AK (1982) Aspects of microbial corrosion. In: Parkins RN (ed) Corrosion processes. Applied Science, London, pp 115–159

    Google Scholar 

  • Venugopalan VP, Rao TS, Sargunam CA, Nair KVK (1994) Some observations on the biological and biochemical aspects of biofilm development in Kalpakkam coastal waters. In: Mary-Frances Thompson R, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. IBH Publishing Company, New Delhi, pp 11–20

    Google Scholar 

  • Videla HA (2001) Microbially induced corrosion: an updated overview. Int Biodeter Biodegr 48:176–201

    Article  CAS  Google Scholar 

  • Videla HA, Herrera LK (2005) Microbially influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Organic Coatings 50:75–104

    Article  CAS  Google Scholar 

  • Zhu XJ, Lubeck J, Kilbane JJ (2003) Characterisation of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:5354–5363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toleti S. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, T.S. (2012). Microbial Fouling and Corrosion: Fundamentals and Mechanisms. In: Rajagopal, S., Jenner, H., Venugopalan, V. (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_6

Download citation

Publish with us

Policies and ethics