Advertisement

Balanced Performance/Robustness PID Design

  • Orlando Arrieta
  • Ramon Vilanova
  • Víctor M. Alfaro
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 110)

Abstract

The design of the closed-loop control system must take into account the system performance to load-disturbance and set-point changes and its robustness to variation of the controlled process characteristics, preserving the well-known trade-off among all these variables. This work faces with the combined servo/regulation performance and robustness problem, in order to get an intermediate solution between the robustness increase and the consequent loss in the optimality degree of the performance. The proposed balanced Proportional-Integrative-Derivative (PID) control design is tested against other tuning methods.

Keywords

PID control Process control Robustness/Performance balance 

Notes

Acknowledgments

This work has received financial support from the Spanish CICYT program under grant DPI2010-15230. Also, the financial support from the University of Costa Rica and from the MICIT and CONICIT of the Government of the Republic of Costa Rica is greatly appreciated.

References

  1. 1.
    Alfaro VM (2006) Low-order models identification from process reaction curve. Ciencia y Tecnología (Costa Rica) 24(2):197–216 (in Spanish)MathSciNetGoogle Scholar
  2. 2.
    Arrieta O, Vilanova R (2010) Performance degradation analysis of controller tuning modes: application to an optimal PID tuning. Int J Innov Comput Inf Contr 6(10):4719–4729Google Scholar
  3. 3.
    Arrieta O, Vilanova R (2011) Simple PID tuning rules with guaranteed M s robustness achievement. In: Proceedings of 18th IFAC world congress, August 28–September 2, Milano, ItalyGoogle Scholar
  4. 4.
    Arrieta O, Visioli A, Vilanova R (2010) PID autotuning for weighted servo/regulation control operation. J Process Contr 20(4):472–480CrossRefGoogle Scholar
  5. 5.
    Åström KJ, Hägglund T (1984) Automatic tuning of simple regulators with specifications on phase and amplitude margin. Automatica 20:645–651CrossRefMATHGoogle Scholar
  6. 6.
    Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning. Instrument of Society of America, Research Triangle Park, North CarolinaGoogle Scholar
  7. 7.
    Åström KJ, Hägglund T (2000) Benchmark systems for PID control. In: Proceedings of IFAC digital control: past, present and future of PID control, Terrassa, SpainGoogle Scholar
  8. 8.
    Åström KJ, Hägglund T (2001) The future of PID control. Contr Eng Pract 9:1163–1175CrossRefGoogle Scholar
  9. 9.
    Åström KJ, Hägglund T (2004) Revisiting the Ziegler–Nichols step response method for PID control. J Process Contr 14:635–650CrossRefGoogle Scholar
  10. 10.
    Åström KJ, Hägglund T (2006) Advanced PID control. ISA: The Instrumentation, Systems, and Automation SocietyGoogle Scholar
  11. 11.
    Babb M (1990) Pneumatic instruments gave birth to automatic control. Contr Eng 37(12):20–22Google Scholar
  12. 12.
    Bennett S (2000) The past of PID controllers. In: Proceedings of IFAC digital control: past, present and future of PID control, Terrassa, SpainGoogle Scholar
  13. 13.
    Chen D, Seborg DE (2002) PI/PID controller design based on direct synthesis and disturbance rejection. Ind Eng Chem Res 41(19):4807–4822CrossRefGoogle Scholar
  14. 14.
    Cohen GH, Coon GA (1953) Theoretical considerations of retarded control. ASME Trans 75:827–834Google Scholar
  15. 15.
    Fung HW, Wang QG, Lee TH (1998) PI tuning in terms of gain and phase margins. Automatica 34:1145–1149CrossRefMATHGoogle Scholar
  16. 16.
    Ho WK, Hang CC, Cao LS (1995) Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3):497–502CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ho WK, Lim KL, Hang CC, Ni LY (1999) Getting more phase margin and performance out of PID controllers. Automatica 35:1579–1585CrossRefMATHGoogle Scholar
  18. 18.
    Ingimundarson A, Hägglund T, Åström KJ (2004) Criteria for desing of PID controllers. Technical report, ESAII, Universitat Politecnica de CatalunyaGoogle Scholar
  19. 19.
    Kristiansson B, Lennartson B (2006) Evaluation and simple tuning of PID controllers with high-frequency robustness. J Process Contr 16:91–102CrossRefGoogle Scholar
  20. 20.
    López AM, Miller JA, Smith CL, Murrill PW (1967) Tuning controllers with Error-Integral criteria. Instru Technol 14:57–62Google Scholar
  21. 21.
    Martin J, Smith CL, Corripio AB (1975) Controller tuning from simple process models. Instru Technol 22(12):39–44Google Scholar
  22. 22.
    O’Dwyer A (2003). Handbook of PI and PID controller tuning rules. Imperial College Press, London, UKGoogle Scholar
  23. 23.
    Rivera DE, Morari M, Skogestad S (1986) Internal model control 4 PID controller design. Ind Eng Chem Res 25:252–265Google Scholar
  24. 24.
    Rovira A, Murrill PW, Smith CL (1969) Tuning controllers for setpoint changes. Instru Contr Syst 42:67–69Google Scholar
  25. 25.
    Skogestad S (2003) Simple analytic rules for model reduction and PID controller tuning. J Process Contr 13:291–309CrossRefGoogle Scholar
  26. 26.
    Tan W, Liu J, Chen T, Marquez HJ (2006) Comparison of some well-known PID tuning formulas. Comput Chem Eng 30:1416–1423CrossRefGoogle Scholar
  27. 27.
    Vilanova R (2008) IMC based robust PID design: tuning guidelines and automatic tuning. J Process Contr 18:61–70CrossRefGoogle Scholar
  28. 28.
    Vilanova R, Alfaro VM, Arrieta O (2011) Ms based approach for simple robust PI controller tuning design. In: Proceedings of the international multiconference of engineers and computer scientists 2011, Hong Kong, 16–18 March 2011. Lecture notes in engineering and computer science, pp 767–771Google Scholar
  29. 29.
    Yaniv O, Nagurka M (2004) Design of PID controllers satisfying gain margin and sensitivity constrains on a set of plants. Automatica 40:111–116CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Zhuang M, Atherton D (1993) Automatic tuning of optimum PID controllers. IEE Proc Part D 140(3):216–224MATHGoogle Scholar
  31. 31.
    Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans 64:759–768Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Orlando Arrieta
    • 1
    • 2
  • Ramon Vilanova
    • 1
  • Víctor M. Alfaro
    • 2
  1. 1.Departament de Telecomunicació i d’Enginyeria de Sistemes, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Departamento de Automática, Escuela de Ingeniería EléctricaUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations