Structured Robust Control for MIMO Systems Using Artificial Intelligent Techniques

  • Somyot Kaitwanidvilai
  • Piyapong Olranthichachat
  • Natthaphob Nimpitiwan
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 110)


In this chapter, a new technique called fixed-structure robust control using artificial intelligent (AI) technique is proposed to enhance both performance and stability of controlled system. In this approach, the structure of controller is specified and the robust stabilization problem is solved by AI techniques. The advantages of simple structure, robustness and high performance can be achieved. In this paper, two multiple inputs multiple outputs (MIMO) controller design problems, i.e., robust control design for electro-hydraulic servo system and fixed-structure robust mixed-sensitivity approach for three phase inverter are illustrated. Simulation results show that the proposed controller has simpler structure than that of conventional robust controller, and the stability margin obtained indicates the robustness of the proposed controller.


Artificial intelligent techniques H optimal control Three phase inverter Electro-hydraulic servo system 


  1. 1.
    Chen BS, Cheng YM (1998) A structure-specified optimal control design for practical applications: a genetic approach. IEEE Trans Control Syst Technol 6(6):707–718CrossRefGoogle Scholar
  2. 2.
    Chen BS, Cheng Y-M, Lee CH (1995) A genetic approach to mixed H 2 ∕ H optimal PID control. IEEE Trans Control Syst 15(5):51–60Google Scholar
  3. 3.
    Ho SJ, Ho SY, Hung MH, Shu LS, Huang HL (2005) Designing structure-specified mixed H 2 ∕ H optimal controllers using an intelligent genetic algorithm IGA. IEEE Trans Control Syst 13(6):119–124Google Scholar
  4. 4.
    McFarlane D, Glover K (1992) A loop shaping design procedure using H synthesis. IEEE Trans Automatic Control 37(6):759–769CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Genc AU (2000) A state-space algorithm for designing Hα loop shaping PID controllers, technical report. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Patra S, Sen S, Ray G (2008) Design of static H loop shaping controller in four-block framework using LMI approach. Automatica 44:2214–2220CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kaitwanidvilai S, Parnichkun M (2004) Genetic algorithm based fixed-structure robust H infinity loop shaping control of a pneumatic servo system. Int J Robot Mechatronics 16(4): 362–373Google Scholar
  8. 8.
    Olranthichachat P, Kaitwanidvilai S Structure specified robust H infinity loop shaping control of a MIMO electro-hydraulic servo system using particle swarm optimization, lecture notes in engineering and computer science. In: Proceedings of the international multiconference of engineers and computer scientists 2011, IMECS 2011, Hong Kong, 16–18 March 2011, pp. 879–883Google Scholar
  9. 9.
    Nimpitiwan N, Kaitwanidvilai S (2011) Robust control design for three-phase power inverters using genetic algorithm. In: Proceedings of international conference electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp. 756–759Google Scholar
  10. 10.
    Kroutikova N, Hernandez-Aramburo CA, Green TC (2007) State-space model of grid-connected inverters under current control mode. IET Electr Power Appl 1(3):329–338CrossRefGoogle Scholar
  11. 11.
    Abdel-Rahim N, Quaicoe JE (1996) Small-signal model and analysis of a multiple feedback control scheme for three-phase voltage-source UPS inverters. In: Proceedings power electronics specialist conference (PESC), vol. 1.Baveno, Italy, pp. 188–194Google Scholar
  12. 12.
    Wu R, Dewan SB, Slemon GR (1991) Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control. IEEE Ind Appl 27(2):355–364CrossRefGoogle Scholar
  13. 13.
    Jamshidi M, Krohling RA, Coelho LS, Fleming PJ (2002) Robust control systems with genetic algorithms. Taylor & Francis, New YorkGoogle Scholar
  14. 14.
    Rodriguez AA (2005) Analysis and design of multivariable feedback control systems. Control3D, Tempe, AZ: Control3D.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Somyot Kaitwanidvilai
    • 1
  • Piyapong Olranthichachat
    • 1
  • Natthaphob Nimpitiwan
    • 2
  1. 1.Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Faculty of EngineeringBangkok UniversityBangkokThailand

Personalised recommendations