Skip to main content

Statistical Methods in Genetic and Molecular Epidemiology and Their Application in Studies with Metabolic Phenotypes

  • Chapter
  • First Online:
  • 1771 Accesses

Abstract

Epidemiology is the study of distributions and determinants of diseases and their associated risk factors. Studies are typically based on large samples of individuals from the general healthy population and/or samples of disease cases from the same or a similar population. Molecular epidemiology is a relatively new discipline in epidemiology dealing with patterns of molecular risk factors of complex diseases. The investigation of broad panels of molecular intermediate phenotypes is central as they may provide a direct access to the underlying disease causing mechanisms. Genetically determined molecular phenotypes are typically quantitative traits that are known to be risk factors for complex diseases and they are assumed to be modulated by common genetic variants. Metabolite concentrations are examples of such genetically determined molecular phenotypes which we call genetically determined metabotypes. In contrast, genetic epidemiology means different things to different people. We regard it as a discipline that focuses on the familial, and in particular genetic, determinants of complex disease and investigates the joint effects of genes and non-genetic determinants such as environmental factors, lifestyles and diets. Both in molecular and genetic epidemiology appropriate account has to be taken regarding the biology that underlies the action of genes and the known mechanisms of inheritance. Important aspects in epidemiology are appropriate study design, data collection, data quality control, statistical analysis, as well as interpretation of results. In this chapter we will discuss some of these issues with a particular focus on genetic association studies in the general population or in case-control studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sebat J, Lakshmi B, Malhotra D et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449

    Article  PubMed  CAS  Google Scholar 

  2. Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747

    PubMed  CAS  Google Scholar 

  3. The International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237–241

    Article  Google Scholar 

  4. Jacquemont S, Reymond A, Zufferey F et al (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478:97–102

    Article  PubMed  CAS  Google Scholar 

  5. The Wellcome Trust Case Control Consortium (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720

    Article  Google Scholar 

  6. Barrett JC, Fry B, Maller J, Daly M (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  7. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  PubMed  CAS  Google Scholar 

  8. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78(4):629–644

    Article  PubMed  CAS  Google Scholar 

  9. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49(1):49–67

    PubMed  CAS  Google Scholar 

  10. Moskvina V, Craddock N, Holmans P et al (2006) Effects of differential genotyping error rate on the type I error probability of case-control studies. Hum Hered 61(1):55–64

    Article  PubMed  Google Scholar 

  11. Weir BS (1996) Genetic data analysis 2: methods for discrete population genetic data. Sinauer, Sunderland

    Google Scholar 

  12. Agresti A (2002) Categorical data analysis. (Wiley series in probability and statistics). Wiley-Interscience, Indianapolis

    Google Scholar 

  13. Ziegler A, König IR (2006) A statistical approach to genetic epidemiology: concepts and applications. Wiley-VCH, Indianapolis

    Google Scholar 

  14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodological 57:289–300

    Google Scholar 

  15. Storey J, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  16. Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc Ser B 64:479–498

    Article  Google Scholar 

  17. Dehghan A, Dupius J, Barbalic M et al (2011) Meta-analysis of genome-wide association studies in >80,000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123(7):731–738

    Article  PubMed  CAS  Google Scholar 

  18. Marzi C, Albrecht E, Hysi PG et al (2010) Genome-wide association study identifies two novel regions at 11p15.5-p13 and 1p31 with major impact on acute-phase serum amyloid A. PLoS Genet 6(11):e1001213

    Article  PubMed  Google Scholar 

  19. Caulfield MJ, Munroe PB, O’Neill D et al (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5(10):e197

    Article  PubMed  Google Scholar 

  20. Vitart V, Rudan I, Hayward C et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40(4):437–442

    Article  PubMed  CAS  Google Scholar 

  21. Hirschhorn JN (2009) Genomewide association studies–illuminating biologic pathways. N Engl J Med 360(17):1699–1701

    Article  PubMed  CAS  Google Scholar 

  22. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713

    Article  PubMed  CAS  Google Scholar 

  23. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106(23):9362–9367

    Article  PubMed  CAS  Google Scholar 

  24. Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360(17):1759–1768

    Article  PubMed  CAS  Google Scholar 

  25. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4(2):45–61

    Article  PubMed  CAS  Google Scholar 

  26. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32(4):381–385

    Article  PubMed  Google Scholar 

  27. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37(4):413–417

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34(8):816–834

    Article  PubMed  Google Scholar 

  29. de Bakker PI, Ferreira MAR, Jia X et al (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17(R2):R122–R128

    Article  PubMed  Google Scholar 

  30. Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10(2):191–201

    Article  PubMed  Google Scholar 

  31. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42(7):579–589

    Article  PubMed  CAS  Google Scholar 

  32. Schunkert H, Köning IR, Kathiresan S et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43(4):333–338

    Article  PubMed  CAS  Google Scholar 

  33. Lango Allen H, Estrada K, Lettre G et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838

    Article  PubMed  CAS  Google Scholar 

  34. Ehret GB, Munroe PB, Rice KM et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367):103–109

    Article  PubMed  CAS  Google Scholar 

  35. Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Uncertainty in heterogeneity estimates in meta-analyses. BMJ 335(7626):914–916

    Article  PubMed  Google Scholar 

  36. Campbell CD, Ogburn EL, Lunetta KL et al (2005) Demonstrating stratification in a European American population. Nat Genet 237(8):868–872

    Article  Google Scholar 

  37. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909

    Article  PubMed  CAS  Google Scholar 

  38. Bacanu SA, Devlin B, Roeder K (2002) Association studies for quantitative traits in structured populations. Genet Epidemiol 22(1):78–93

    Article  PubMed  Google Scholar 

  39. Bacanu SA, Devlin B, Roeder K (2000) The power of genomic control. Am J Hum Genet 66(6):1933–1944

    Article  PubMed  CAS  Google Scholar 

  40. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55(4):997–1004

    Article  PubMed  CAS  Google Scholar 

  41. Kolz M, Johnson T, Sanna S et al (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5(6):e1000504

    Article  PubMed  Google Scholar 

  42. Döring A, Christian G, Mehta D et al (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40(4):430–436

    Article  PubMed  Google Scholar 

  43. Yang Q, Köttgen A, Dehghan A et al (2010) Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet 3(6):523–530

    Article  PubMed  CAS  Google Scholar 

  44. Woodward OM, Köttgen A, Coresh J et al (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106(25):10338–10342

    Article  PubMed  CAS  Google Scholar 

  45. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  PubMed  CAS  Google Scholar 

  46. McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    Article  PubMed  CAS  Google Scholar 

  47. Park JH, Wacholder S, Gail MH et al (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42(7):570–575

    Article  PubMed  CAS  Google Scholar 

  48. Yang J, Manolio TA, Pasquale LR et al (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43(6):519–525

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gieger, C. (2012). Statistical Methods in Genetic and Molecular Epidemiology and Their Application in Studies with Metabolic Phenotypes. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_4

Download citation

Publish with us

Policies and ethics