Skip to main content

Metabolic Traits as Intermediate Phenotypes

  • Chapter
  • First Online:

Abstract

Complex diseases such as coronary heart disease or diabetes mellitus are influenced by a large number of genes and environmental factors. Therefore, in most cases the contribution of a single gene is small. The identification of these genes requires a large number of well characterized patients and controls. Alternatively, the investigation of intermediate phenotypes instead of these complex endpoints seems to be more promising. An intermediate phenotype which is usually already well known or suspected to be associated with the investigated disease, is heritable and represents an aspect among others in the pathogenesis of the complex disease. This results in an accentuation of the phenotype and reduction of genetic heterogeneity. The investigation of the genetics of the intermediate phenotype instead of investigating the genetics of the final endpoints allows the elucidation of this aspect of the disease. Optimal intermediate phenotypes are quantitative, easy to measure biochemical parameters. This results in an increased statistical power in contrast to qualitative phenotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kronenberg F, Heid IM (2007) Genetik intermediärer Phänotypen. Medizinische Genetik 19:304–308

    Article  CAS  Google Scholar 

  2. Prentice RL (1989) Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 8:431–440

    Article  PubMed  CAS  Google Scholar 

  3. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182

    Article  PubMed  CAS  Google Scholar 

  4. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  5. Kiechl S, Willeit J, The Bruneck Study Group (1999) The natural course of atherosclerosis. Part I: incidence and progression. Arterioscler Thromb Vasc Biol 19:1484–1490

    Article  PubMed  CAS  Google Scholar 

  6. Kiechl S, Willeit J, The Collaborative Study Group (1999) The natural course of atherosclerosis. Part II: vascular remodeling. Arterioscler Thromb Vasc Biol 19:1491–1498

    Article  PubMed  CAS  Google Scholar 

  7. Lamina C, Meisinger C, Heid IM et al (2006) Association of ankle-brachial index and plaques in the carotid and femoral arteries with cardiovascular events and total mortality in a population-based study with 13-years of follow-up. Eur Heart J 27:2580–2587

    Article  PubMed  Google Scholar 

  8. Suhre K, Wallaschofski H, Raffler J et al (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569

    Article  PubMed  CAS  Google Scholar 

  9. Illig T, Gieger C, Zhai G et al (2010) A genomewide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    Article  PubMed  CAS  Google Scholar 

  10. Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:1000282

    Article  Google Scholar 

  11. Kathiresan S, Melander O, Guiducci C et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–197

    Article  PubMed  CAS  Google Scholar 

  12. Aulchenko YS, Ripatti S, Lindquist I et al (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41:47–55

    Article  PubMed  CAS  Google Scholar 

  13. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Article  PubMed  CAS  Google Scholar 

  14. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  15. Kronenberg F (2010) Association of bilirubin with cardiovascular outcomes: more hype than substance? Circ Cardiovasc Genet 3:308–310

    Article  PubMed  CAS  Google Scholar 

  16. Hunt SC, Wu LL, Hopkins PN, Williams RR (1996) Evidence for a major gene elevating serum bilirubin concentration in Utah pedigrees. Arterioscler Thromb Vasc Biol 16:912–917

    Article  PubMed  CAS  Google Scholar 

  17. Kronenberg F, Coon H, Gutin A et al (2002) A genome scan for loci influencing anti-­atherogenic serum bilirubin levels. Eur J Hum Genet 10:539–546

    Article  PubMed  CAS  Google Scholar 

  18. Lin JP, Cupples LA, Wilson PW, Heard-Costa N, O’Donnell CJ (2003) Evidence for a gene influencing serum bilirubin on chromosome 2q telomere: a genomewide scan in the Framingham study. Am J Hum Genet 72:1029–1034

    Article  PubMed  CAS  Google Scholar 

  19. Lin J-P, Schwaiger JP, Cupples LA et al (2009) Conditional linkage and genome-wide association studies identify UGT1A1 as major gene for anti-atherogenic serum bilirubin levels – a Framingham Heart Study. Atherosclerosis 206:228–233

    Article  PubMed  CAS  Google Scholar 

  20. Bosma PJ, Chowdhury JR, Bakker C et al (1995) The genetic basis of the reduced expression of bilirubin UDP- glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333:1171–1175

    Article  PubMed  CAS  Google Scholar 

  21. Lin J-P, O’Donnell CJ, Schwaiger JP et al (2006) Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 114:1476–1481

    Article  PubMed  CAS  Google Scholar 

  22. Lingenhel A, Kollerits B, Schwaiger JP et al (2008) Serum bilirubin levels, UGT1A1 polymorphisms and risk for coronary artery disease. Exp Gerontol 43:1102–1107

    Article  PubMed  CAS  Google Scholar 

  23. Rantner B, Kollerits B, Anderwald-Stadler M et al (2008) Association between the UGT1A1 TA-repeat polymorphism and bilirubin concentration in patients with intermittent claudication: results from the CAVASIC Study. Clin Chem 54:851–857

    Article  PubMed  CAS  Google Scholar 

  24. Katan MB (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1:507–508

    Article  PubMed  CAS  Google Scholar 

  25. Davey SG, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22

    Article  Google Scholar 

  26. Sandholzer C, Saha N, Kark JD et al (1992) Apo(a) isoforms predict risk for coronary heart disease: a study in six populations. Arterioscler Thromb 12:1214–1226

    Article  PubMed  CAS  Google Scholar 

  27. Kronenberg F, Kronenberg MF, Kiechl S et al (1999) Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: prospective results from the Bruneck Study. Circulation 100:1154–1160

    Article  PubMed  CAS  Google Scholar 

  28. Erqou S, Thompson A, Di AE et al (2010) Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol 55:2160–2167

    Article  PubMed  CAS  Google Scholar 

  29. Erqou S, Kaptoge S, Perry PL et al (2009) Lipoprotein(a) concentration and the risk of ­coronary heart disease, stroke, and nonvascular mortality. JAMA 302:412–423

    Article  PubMed  CAS  Google Scholar 

  30. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG (2009) Genetically ­elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301:2331–2339

    Article  PubMed  CAS  Google Scholar 

  31. Kronenberg F (2004) Epidemiology, pathophysiology and therapeutic implications of lipoprotein(a) in kidney disease. Expert Rev Cardiovasc Ther 2:729–743

    Article  PubMed  CAS  Google Scholar 

  32. Kraft HG, Köchl S, Menzel HJ, Sandholzer C, Utermann G (1992) The apolipoprotein(a) gene: a transcribed hypervariable locus controlling plasma lipoprotein(a) concentration. Hum Genet 90:220–230

    Article  PubMed  CAS  Google Scholar 

  33. Kraft HG, Lingenhel A, Köchl S et al (1996) Apolipoprotein(a) Kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol 16:713–719

    Article  PubMed  CAS  Google Scholar 

  34. Schunkert H, Konig IR, Kathiresan S et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kronenberg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kronenberg, F. (2012). Metabolic Traits as Intermediate Phenotypes. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_15

Download citation

Publish with us

Policies and ethics