Abstract
The comprehensive understanding of metabolism in health and disease has reached a new level with the introduction of Metabolome-Wide Association Studies. Quantitative Trait Locus mapping of metabolic phenotypes (mQTL) is a powerful approach to unravel the genetic component associated with metabolic profiles, and typically identifies genes associated with metabolic markers of disease. In this chapter we describe the various stages of the mQTL mapping strategy, which typically involves a genetically heterogeneous cohort, modern genotyping platforms, hypothesis-free metabolic profiling using high-throughput nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS), generating up to 20,000 metabolic traits per sample and the statistical tools required to map these traits onto the genome of this experimental population. Finally we describe network and systems biology strategies enhancing the biological interpretation of haplotype – metabotype association networks derived from mQTL studies for a better understanding of pathophysiological mechanisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dumas ME, Maibaum EC, Teague C et al (2006) Assessment of analytical reproducibility of 1 H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem 78(7):2199–2208
Holmes E, Loo RL, Stamler J et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396–400
Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391
Dixon AL, Liang L, Moffatt MF et al (2007) A genome-wide association study of global gene expression. Nat Genet 39(10):1202–1207
Schadt EE, Monks SA, Drake TA et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929):297–302
Klose J, Nock C, Herrmann M et al (2002) Genetic analysis of the mouse brain proteome. Nat Genet 30(4):385–393
Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24(4):447–454
Keurentjes JJ, Fu J, de Vos CH et al (2006) The genetics of plant metabolism. Nat Genet 38(7):842–849
Dumas ME, Wilder SP, Bihoreau MT et al (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39(5):666–672
Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4(11):e1000282
Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141
Suhre K, Wallaschofski H, Raffler J et al (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569
Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890
Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575
Rapp JP, Wang SM, Dene H (1989) A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243(4890):542–544
Gauguier D, Froguel P, Parent V et al (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12(1):38–43
Johannesson M, Lopez-Aumatell R, Stridh P et al (2009) A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: the NIH heterogeneous stock. Genome Res 19(1):150–158
Valdar W, Solberg LC, Gauguier D et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38(8):879–887
Collins SC, Wallis RH, Wilder SP et al (2006) Mapping diabetes QTL in an intercross derived from a congenic strain of the Brown Norway and Goto-Kakizaki rats. Mamm Genome 17(6):538–547
Beckonert O, Coen M, Keun HC et al (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5(6):1019–1032
Beckonert O, Keun HC, Ebbels TM et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703
Want EJ, Wilson ID, Gika H et al (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6):1005–1018
Blaise BJ, Giacomotto J, Elena B et al (2007) Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proc Natl Acad Sci USA 104(50):19808–19812
Blaise BJ, Giacomotto J, Triba MN et al (2009) Metabolic profiling strategy of Caenorhabditis elegans by whole-organism nuclear magnetic resonance. J Proteome Res 8(5):2542–2550
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787
Cloarec O, Dumas ME, Trygg J et al (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1 H NMR spectroscopic metabonomic studies. Anal Chem 77(2):517–526
Veselkov KA, Lindon JC, Ebbels TM et al (2009) Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Anal Chem 81(1):56–66
Blaise BJ, Shintu L, Elena B, Emsley L, Dumas ME, Toulhoat P (2009) Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics. Anal Chem 81(15):6242–6251
Dumas ME, Debrauwer L, Beyet L et al (2002) Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Anal Chem 74(20):5393–5404
Fonville JM, Richards SE, Barton RH et al (2010) The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemom 24(11–12):636–649
Cloarec O, Dumas ME, Craig A et al (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1 H NMR data sets. Anal Chem 77(5):1282–1289
Dumas ME, Canlet C, Debrauwer L, Martin P, Paris A (2005) Selection of biomarkers by a multivariate statistical processing of composite metabonomic data sets using multiple factor analysis. J Proteome Res 4(5):1485–1492
Crockford DJ, Holmes E, Lindon JC et al (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78(2):363–371
Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442
Dumas ME, Canlet C, Andre F, Vercauteren J, Paris A (2002) Metabonomic assessment of physiological disruptions using 1 H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal Chem 74(10):2261–2273
Gauguier D, Samani N (2002) Approaches to the analysis of complex quantitative phenotypes and marker map construction based on the analysis of rat models of hypertension. Methods Mol Biol 195:225–251
Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69(4):315–324
Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev Genet 3(1):11–21
Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52
Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577
Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142(1):285–294
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113
Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121–1122
Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8(9):699–710
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30
Pontoizeau C, Fearnside JF, Navratil V et al (2011) Broad-ranging natural metabotype variation drives physiological plasticity in healthy control inbred rat strains. J Proteome Res 10(4):1675–1689
Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77
Chagoyen M, Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27(5):730–731
Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550
Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101(6):1543–1547
Blaise BJ, Navratil V, Domange C et al (2010) Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. J Proteome Res 9(9):4513–4520
Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627
Davidovic L, Navratil V, Bonaccorso CM et al (2011) A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 21:2190–2202
Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41
Dumas ME, Barton RH, Toye A et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103(33):12511–12516
Acknowledgements
The authors acknowledge support from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement N° HEALTH-F4-2010-241504 (EURATRANS), the ANR (mQTL ANR-08-GENO-030-02) and the Fondation pour la Recherche Médicale. Marc-Emmanuel Dumas holds a Young Investigator Award from Agence Nationale de la Recherche (ANR-07-JCJC-0042-01) Dominique Gauguier holds a Wellcome Trust Senior Fellowship in basic biomedical science (057733).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Dumas, ME., Gauguier, D. (2012). Mapping Metabolomic Quantitative Trait Loci (mQTL): A Link Between Metabolome-Wide Association Studies and Systems Biology. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_14
Download citation
DOI: https://doi.org/10.1007/978-1-4614-1689-0_14
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-1688-3
Online ISBN: 978-1-4614-1689-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)