Advertisement

Cis-Regulatory Disruption at the SOX9 Locus as a Cause of Pierre Robin Sequence

  • Christopher T. GordonEmail author
  • Sabina Benko
  • Jeanne Amiel
  • Stanislas LyonnetEmail author
Chapter

Abstract

Mutations in the coding sequence of SOX9 cause the severe congenital skeletal disorder campomelic dysplasia (CD). A range of genomic lesions in the region upstream of the SOX9 coding sequence are also associated with CD, although often with milder phenotypic effects. Studies in humans and animal models suggest that these non-coding lesions disrupt SOX9 expression in specific tissues during embryonic development. Several lesions at the SOX9 locus, including translocations and microdeletions greater than 1 Mb upstream of the transcription start site, are associated with isolated Pierre Robin sequence (PRS), a craniofacial anomaly that is typically one part of the full-blown CD phenotype. In this chapter, we discuss how the lesions far upstream of SOX9 suggest a requirement for craniofacial-specific regulatory elements during SOX9 transcription in embryonic development and how the cis-ruption of these elements alone might result in isolated PRS, an endophenotype of CD.

Keywords

Pierre Robin sequence SOX9 Campomelic dysplasia Craniofacial Chondrogenesis Enhancer Conserved non-coding element Cranial neural crest 

Abbreviations

ACD

Acampomelic campomelic dysplasia

CD

Campomelic dysplasia

CGH

Comparative genomic hybridization

CNE

Conserved non-coding element

HMG

High-mobility group

Mb

Megabase

PRS

Pierre Robin sequence

SOX9

SRY (sex-determining region Y)-box 9

References

  1. Abadie V, Morisseau-Durand MP et al (2002) Brainstem dysfunction: a possible neuroembryological pathogenesis of isolated Pierre Robin sequence. Eur J Pediatr 161(5):275–280PubMedCrossRefGoogle Scholar
  2. Akiyama H, Chaboissier MC et al (2004a) Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci USA 101(17):6502–6507PubMedCrossRefGoogle Scholar
  3. Akiyama H, Chaboissier MC et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16(21):2813–2828PubMedCrossRefGoogle Scholar
  4. Akiyama H, Lyons JP et al (2004b) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18(9):1072–1087PubMedCrossRefGoogle Scholar
  5. Antonellis A, Huynh JL et al (2008) Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet 4(9):e1000174PubMedCrossRefGoogle Scholar
  6. Bagheri-Fam S, Barrionuevo F et al (2006) Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 291(2):382–397PubMedCrossRefGoogle Scholar
  7. Bagheri-Fam S, Ferraz C et al (2001) Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics 78(1–2):73–82PubMedCrossRefGoogle Scholar
  8. Barna M, Niswander L (2007) Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev Cell 12(6):931–941PubMedCrossRefGoogle Scholar
  9. Barrionuevo F, Bagheri-Fam S et al (2006a) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74(1):195–201PubMedCrossRefGoogle Scholar
  10. Barrionuevo F, Naumann A et al (2008) Sox9 is required for invagination of the otic placode in mice. Dev Biol 317(1):213–224PubMedCrossRefGoogle Scholar
  11. Barrionuevo F, Taketo MM et al (2006b) Sox9 is required for notochord maintenance in mice. Dev Biol 295(1):128–140PubMedCrossRefGoogle Scholar
  12. Bastide P, Darido C et al (2007) Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 178(4):635–648PubMedCrossRefGoogle Scholar
  13. Bell DM, Leung KK et al (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16(2):174–178PubMedCrossRefGoogle Scholar
  14. Benko S, Fantes JA et al (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41(3):359–364PubMedCrossRefGoogle Scholar
  15. Bi W, Deng JM et al (1999) Sox9 is required for cartilage formation. Nat Genet 22(1):85–89PubMedCrossRefGoogle Scholar
  16. Bi W, Huang W et al (2001) Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA 98(12):6698–6703PubMedCrossRefGoogle Scholar
  17. Bishop CE, Whitworth DJ et al (2000) A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26(4):490–494PubMedCrossRefGoogle Scholar
  18. Bridgewater LC, Lefebvre V et al (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273(24):14998–15006PubMedCrossRefGoogle Scholar
  19. Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144(3):327–339PubMedCrossRefGoogle Scholar
  20. Cheung M, Chaboissier MC et al (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8(2):179–192PubMedCrossRefGoogle Scholar
  21. Cohen MM Jr (1999) Robin sequences and complexes: causal heterogeneity and pathogenetic/phenotypic variability. Am J Med Genet 84(4):311–315PubMedCrossRefGoogle Scholar
  22. Day A, Dong J et al (2009) Disease gene characterization through large-scale co-expression analysis. PLoS One 4(12):e8491PubMedCrossRefGoogle Scholar
  23. Dixon J, Jones NC et al (2006) Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci USA 103(36):13403–13408PubMedCrossRefGoogle Scholar
  24. Donaldson MR, Jensen JL et al (2003) PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology 60(11):1811–1816PubMedCrossRefGoogle Scholar
  25. Eames BF, Sharpe PT et al (2004) Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol 274(1):188–200PubMedCrossRefGoogle Scholar
  26. Evans AK, Rahbar R et al (2006) Robin sequence: a retrospective review of 115 patients. Int J Pediatr Otorhinolaryngol 70(6):973–980PubMedCrossRefGoogle Scholar
  27. Foster JW, Dominguez-Steglich MA et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525–530PubMedCrossRefGoogle Scholar
  28. Ghassibe-Sabbagh M, Desmyter L et al (2011) FAF1, a gene that is disrupted in cleft palate and has conserved function in zebrafish. Am J Hum Genet 88(2):150–161PubMedCrossRefGoogle Scholar
  29. Hill-Harfe KL, Kaplan L et al (2005) Fine mapping of chromosome 17 translocation breakpoints  >  or  =  900 kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am J Hum Genet 76(4):663–671PubMedCrossRefGoogle Scholar
  30. Holder-Espinasse M, Abadie V et al (2001) Pierre Robin sequence: a series of 117 consecutive cases. J Pediatr 139(4):588–590PubMedCrossRefGoogle Scholar
  31. Jakobsen LP, Ullmann R et al (2007) Pierre Robin sequence may be caused by dysregulation of SOX9 and KCNJ2. J Med Genet 44(6):381–386PubMedCrossRefGoogle Scholar
  32. Johnston JJ, Teer JK et al (2010) Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am J Hum Genet 86(5):743–748PubMedCrossRefGoogle Scholar
  33. Jongsma HJ, Wilders R (2001) Channelopathies: Kir2.1 mutations jeopardize many cell functions. Curr Biol 11(18):R747–R750PubMedCrossRefGoogle Scholar
  34. Kist R, Schrewe H et al (2002) Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis 32(2):121–123PubMedCrossRefGoogle Scholar
  35. Kurth I, Klopocki E et al (2009) Duplications of noncoding elements 5′ of SOX9 are associated with brachydactyly-anonychia. Nat Genet 41(8):862–863PubMedCrossRefGoogle Scholar
  36. Lecointre C, Pichon O et al (2009) Familial acampomelic form of campomelic dysplasia caused by a 960 kb deletion upstream of SOX9. Am J Med Genet A 149A(6):1183–1189PubMedCrossRefGoogle Scholar
  37. Lefebvre V, Huang W et al (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17(4):2336–2346PubMedGoogle Scholar
  38. Leipoldt M, Erdel M et al (2007) Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia. Clin Genet 71(1):67–75PubMedCrossRefGoogle Scholar
  39. Liu Y, Li H et al (2000) Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem 275(17):12712–12718PubMedCrossRefGoogle Scholar
  40. Mansour S, Hall CM et al (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32(6):415–420PubMedCrossRefGoogle Scholar
  41. McKeown SJ, Lee VM et al (2005) Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 233(2):430–444PubMedCrossRefGoogle Scholar
  42. Melkoniemi M, Koillinen H et al (2003) Collagen XI sequence variations in nonsyndromic cleft palate, Robin sequence and micrognathia. Eur J Hum Genet 11(3):265–270PubMedCrossRefGoogle Scholar
  43. Mori-Akiyama Y, Akiyama H et al (2003) Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci USA 100(16):9360–9365PubMedCrossRefGoogle Scholar
  44. Ng LJ, Wheatley S et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121PubMedCrossRefGoogle Scholar
  45. Nie X (2006) Sox9 mRNA expression in the developing palate and craniofacial muscles and skeletons. Acta Odontol Scand 64(2):97–103PubMedCrossRefGoogle Scholar
  46. Ninomiya S, Isomura M et al (1996) Isolation of a testis-specific cDNA on chromosome 17q from a region adjacent to the breakpoint of t(12; 17) observed in a patient with acampomelic campomelic dysplasia and sex reversal. Hum Mol Genet 5(1):69–72PubMedCrossRefGoogle Scholar
  47. Pfeifer D, Kist R et al (1999) Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet 65(1):111–124PubMedCrossRefGoogle Scholar
  48. Plaster NM, Tawil R et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105(4):511–519PubMedCrossRefGoogle Scholar
  49. Pop R, Conz C et al (2004) Screening of the 1 Mb SOX9 5ʹ control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet 41(4):e47PubMedCrossRefGoogle Scholar
  50. Preisig-Muller R, Schlichthorl G et al (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA 99(11):7774–7779PubMedCrossRefGoogle Scholar
  51. Pritchett J, Athwal V et al (2010) Understanding the role of SOX9 in acquired diseases: lessons from development. Trends Mol Med 17(3):166–174CrossRefGoogle Scholar
  52. Qin Y, Kong LK et al (2004) Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 13(12):1213–1218PubMedCrossRefGoogle Scholar
  53. Refai O, Friedman A et al (2010) De novo 12; 17 translocation upstream of SOX9 resulting in 46, XX testicular disorder of sex development. Am J Med Genet A 152A(2):422–426PubMedCrossRefGoogle Scholar
  54. Sakai D, Suzuki T et al (2006) Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development 133(7):1323–1333PubMedCrossRefGoogle Scholar
  55. Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6(4):348–356PubMedCrossRefGoogle Scholar
  56. Scott CE, Wynn SL et al (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13(10):1181–1189PubMedCrossRefGoogle Scholar
  57. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453(7197):930–934PubMedCrossRefGoogle Scholar
  58. Seymour PA, Freude KK et al (2007) SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA 104(6):1865–1870PubMedCrossRefGoogle Scholar
  59. Spokony RF, Aoki Y et al (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129(2):421–432PubMedGoogle Scholar
  60. Staffler A, Hammel M et al (2010) Heterozygous SOX9 mutations allowing for residual DNA-binding and transcriptional activation lead to the acampomelic variant of campomelic dysplasia. Hum Mutat 31(6):E1436–E1444PubMedCrossRefGoogle Scholar
  61. Stolt CC, Lommes P et al (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17(13):1677–1689PubMedCrossRefGoogle Scholar
  62. Suzuki T, Sakai D et al (2006) Sox genes regulate type 2 collagen expression in avian neural crest cells. Dev Growth Differ 48(8):477–486PubMedCrossRefGoogle Scholar
  63. Tanpaiboon P, Kantaputra P et al (2010) c. 595–596 insC of FOXC2 underlies lymphedema, distichiasis, ptosis, ankyloglossia, and Robin sequence in a Thai patient. Am J Med Genet A 152A(3):737–740PubMedCrossRefGoogle Scholar
  64. Tristani-Firouzi M, Jensen JL et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110(3):381–388PubMedGoogle Scholar
  65. Uchikawa M, Ishida Y et al (2003) Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4(4):509–519PubMedCrossRefGoogle Scholar
  66. van den Boogaard MJ, Dorland M et al (2000) MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 24(4):342–343PubMedCrossRefGoogle Scholar
  67. van den Elzen AP, Semmekrot BA et al (2001) Diagnosis and treatment of the Pierre Robin sequence: results of a retrospective clinical study and review of the literature. Eur J Pediatr 160(1):47–53PubMedCrossRefGoogle Scholar
  68. Velagaleti GV, Bien-Willner GA et al (2005) Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 76(4):652–662PubMedCrossRefGoogle Scholar
  69. Wagner T, Wirth J et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120PubMedCrossRefGoogle Scholar
  70. Werner T, Hammer A et al (2007) Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res 35(19): 6526–6538PubMedCrossRefGoogle Scholar
  71. White S, Ohnesorg T et al (2011) Copy number variation in patients with disorders of sex development due to 46, XY gonadal dysgenesis. PLoS One 6(3):e17793PubMedCrossRefGoogle Scholar
  72. Wirth J, Wagner T et al (1996) Translocation breakpoints in three patients with campomelic dysplasia and autosomal sex reversal map more than 130 kb from SOX9. Hum Genet 97(2):186–193PubMedCrossRefGoogle Scholar
  73. Wright E, Hargrave MR et al (1995) The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9(1):15–20PubMedCrossRefGoogle Scholar
  74. Wunderle VM, Critcher R et al (1998) Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci USA 95(18):10649–10654PubMedCrossRefGoogle Scholar
  75. Yagi H, Furutani Y et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362(9393):1366–1373PubMedCrossRefGoogle Scholar
  76. Yamashiro T, Wang XP et al (2004) Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. J Bone Miner Res 19(10):1671–1677PubMedCrossRefGoogle Scholar
  77. Yoon G, Oberoi S et al (2006) Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am J Med Genet A 140(4):312–321PubMedGoogle Scholar
  78. Zaritsky JJ, Eckman DM et al (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res 87(2):160–166PubMedCrossRefGoogle Scholar
  79. Zeevaert R, Foulquier F et al (2009) Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet 18(3):517–524PubMedCrossRefGoogle Scholar
  80. Zhao Q, Eberspaecher H et al (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209(4):377–386PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of GeneticsUniversity Paris Descartes and INSERM U-781ParisFrance

Personalised recommendations