Skip to main content

Epigenetic Code and Self-Identity

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Epigenetics is a new and expanding science that studies the chromatin-based regulation of gene expression. It is achieving considerable importance, especially with regard to developmental mechanisms that drive cell and organ differentiation, as well as in all those biological processes that involve response and adaptation to environmental stimuli. One of the most interesting biological questions concerning animals, especially human beings, is the ability to distinguish self from nonself. This ability has developed throughout evolution, both as the main function of the immune system, which defends against attack by foreign organisms and at the level of consciousness of oneself as an individual, one of the highest functions of the brain that enables social life. Here we will attempt to dissect the epigenetic mechanisms involved in establishing these higher functions and describe some alterations of the epigenetic machinery responsible for the impairment of correct self-recognition and self-identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waddington C. The epigenotype. Endeavour 1942; 1:18–20.

    Google Scholar 

  2. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447(7143):425–32.

    PubMed  CAS  Google Scholar 

  3. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532):1074–80.

    PubMed  CAS  Google Scholar 

  4. Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet 2006; 15 Spec No 1: R95–101.

    PubMed  CAS  Google Scholar 

  5. Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20(14):1848–67.

    PubMed  CAS  Google Scholar 

  6. Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 2009; 43:143–166.

    PubMed  CAS  Google Scholar 

  7. Kangaspeska S, Stride B, Metivier R et al. Transient cyclical methylation of promoter DNA. Nature 2008; 452(7183):112–5.

    PubMed  CAS  Google Scholar 

  8. Ma DK, Guo JU, Ming GL et al. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 2009; 8(10):1526–31.

    PubMed  CAS  Google Scholar 

  9. Metivier R, Gallais R, Tiffoche C et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008; 452(7183):45–50.

    PubMed  CAS  Google Scholar 

  10. Abdalla H, Yoshizawa Y Hochi S. Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 2009; 55(4):356–60.

    PubMed  CAS  Google Scholar 

  11. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 2000; 9(16):2395–402.

    PubMed  CAS  Google Scholar 

  12. Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 1998; 18(11):6538–47.

    PubMed  CAS  Google Scholar 

  13. Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693–705.

    PubMed  CAS  Google Scholar 

  14. Shogren-Knaak M, Ishii H, Sun JM et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311(5762):844–7.

    PubMed  CAS  Google Scholar 

  15. Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 2007; 26(37):5521–7.

    PubMed  CAS  Google Scholar 

  16. Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007; 25(1):1–14.

    PubMed  CAS  Google Scholar 

  17. Ito T. Role of histone modification in chromatin dynamics. J Biochem 2007. 141(5):609–14.

    PubMed  CAS  Google Scholar 

  18. Fraga MF, Ballestar E, Paz MF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005; 102(30):10604–9.

    PubMed  CAS  Google Scholar 

  19. Langman RE, Cohn M. A minimal model for the self-nonself discrimination: a return to the basics. Semin Immunol 2000; 12(3):189–95; discussion 257-344.

    PubMed  CAS  Google Scholar 

  20. Allman D, Sambandam A, Kim S et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 2003; 4(2):168–74.

    PubMed  CAS  Google Scholar 

  21. Dakic A, Metcalf D, Di Rago L et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 2005; 201(9):1487–502.

    PubMed  CAS  Google Scholar 

  22. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol 2004; 22:55–79.

    PubMed  CAS  Google Scholar 

  23. Maier H, Ostraat R, Gao H et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 2004; 5(10):1069–77.

    PubMed  CAS  Google Scholar 

  24. Linderson Y, Eberhard D, Malin S et al. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 2004; 5(3):291–6.

    PubMed  CAS  Google Scholar 

  25. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109 Suppl:S45–55.

    Google Scholar 

  26. Romanow WJ, Langerak AW, Goebel P et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000; 5(2):343–53.

    PubMed  CAS  Google Scholar 

  27. Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–403.

    PubMed  CAS  Google Scholar 

  28. McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 2000; 287(5452):495–8.

    PubMed  CAS  Google Scholar 

  29. Su IH, Basavaraj A, Krutchinsky AN et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4(2):124–31.

    PubMed  CAS  Google Scholar 

  30. Morshead KB, Ciccone DN, Taverna SD et al. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci U S A 2003; 100(20):11577–82.

    PubMed  CAS  Google Scholar 

  31. Osipovich O, Milley R, Meade A et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004; 5(3):309–16.

    PubMed  CAS  Google Scholar 

  32. Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–30.

    PubMed  CAS  Google Scholar 

  33. Kosak ST, Skok JA, Medina KL et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296(5565):158–62.

    PubMed  CAS  Google Scholar 

  34. Fuxa M, Skok J, Souabni A et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 2004; 18(4):411–22.

    PubMed  CAS  Google Scholar 

  35. Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science 2004; 306(5701):1574–7.

    PubMed  CAS  Google Scholar 

  36. Hansen RS, Wijmenga C, Luo P et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 1999; 96(25):14412–7.

    PubMed  CAS  Google Scholar 

  37. Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell 2007; 130(1):25–35.

    PubMed  CAS  Google Scholar 

  38. Richardson B, Scheinbart L, Strahler J et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33(11):1665–73.

    PubMed  CAS  Google Scholar 

  39. Kaplan MJ, Lu Q, Wu A et al. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 2004; 172(6):3652–61.

    PubMed  CAS  Google Scholar 

  40. Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174(10):6212–9.

    PubMed  CAS  Google Scholar 

  41. Richardson B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol 1986; 17(4):456–70.

    PubMed  CAS  Google Scholar 

  42. Lu Q, Kaplan M, Ray D et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002; 46(5):1282–91.

    PubMed  CAS  Google Scholar 

  43. Takeuchi T, Amano K, Sekine H et al. Upregulated expression and function of integrin adhesive receptors in systemic lupus erythematosus patients with vasculitis. J Clin Invest 1993; 92(6):3008–16.

    PubMed  CAS  Google Scholar 

  44. Org T, Chignola F, Hetenyi C et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 2008; 9(4):370–6.

    PubMed  CAS  Google Scholar 

  45. Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 2008; 57(11):1719–26.

    PubMed  CAS  Google Scholar 

  46. Nie Y, Yang G, Song Y et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 2001; 22(10):1615–23.

    PubMed  CAS  Google Scholar 

  47. Coral S, Sigalotti L, Gasparollo A et al. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2’-deoxycytidine (5-AZA-CdR). J Immunother 1999; 22(1):16–24.

    PubMed  CAS  Google Scholar 

  48. Holling TM, Schooten E, Langerak AW et al. Regulation of MHC class II expression in human T-cell malignancies. Blood 2004; 103(4):1438–44.

    PubMed  CAS  Google Scholar 

  49. Tomasi TB, Magner WJ, Khan AN. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 2006; 55(10):1159–84.

    PubMed  Google Scholar 

  50. van den Elsen PJ, Gobin SJ, van der Stoep N et al. Transcriptional control of MHC genes in fetal trophoblast cells. J Reprod Immunol 2001; 52(1–2):129–45.

    PubMed  Google Scholar 

  51. Hunt JS, Langat DL. HLA-G: a human pregnancy-related immunomodulator. Curr Opin Pharmacol 2009; 9(4):462–9.

    PubMed  CAS  Google Scholar 

  52. Ishitani A, Sageshima N, Hatake K. The involvement of HLA-E and-F in pregnancy. J Reprod Immunol 2006; 69(2):101–13.

    PubMed  CAS  Google Scholar 

  53. Northoff G, Bermpohl F. Cortical midline structures and the self. Trends Cogn Sci 2004; 8(3):102–7.

    PubMed  Google Scholar 

  54. Uddin LQ, Iacoboni M, Lange, C et al. The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 2007; 11(4):153–7.

    PubMed  Google Scholar 

  55. Azuara V, Perry P, Sauer S et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8(5):532–8.

    PubMed  CAS  Google Scholar 

  56. Palaparti A, Baratz A, Stifani S. The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem 1997; 272(42):26604–26610.

    PubMed  CAS  Google Scholar 

  57. Iso T, Sartorelli V, Poizat C et al. HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 2001; 21(17):6080–6089.

    PubMed  CAS  Google Scholar 

  58. Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression. Biochem Bioph Res Comm 2003; 301(1):250–257.

    CAS  Google Scholar 

  59. Ballas N, Grunseich, C, Lu DD et al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121(4):645–657.

    PubMed  CAS  Google Scholar 

  60. Ooi L, Belyaev ND, Miyake K et al. BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. J Biol Chem 2006; 281(51):38974–38980.

    PubMed  CAS  Google Scholar 

  61. Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 2005; 15(5):500–506.

    PubMed  CAS  Google Scholar 

  62. Conaco C, Otto S, Han JJ et al. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Nat Acad Sci U S A 2006; 103(7):2422–2427.

    CAS  Google Scholar 

  63. Schoenherr CJ, Anderson DJ. Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol 1995; 5(5):566–571.

    PubMed  CAS  Google Scholar 

  64. Kuwabara T, Hsieh J, Nakashima K et al. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 2004; 116(6):779–793.

    PubMed  CAS  Google Scholar 

  65. Wynder C, Hakimi MA, Epstein JA et al. Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation. Nat Cell Biol 2005; 7(11):1113–1117.

    PubMed  CAS  Google Scholar 

  66. Lee JE. Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 1997; 7(1):13–20.

    PubMed  Google Scholar 

  67. Ross SE, Greenberg ME, Stiles CD. Basic helix-loop-helix factors in cortical development. Neuron 2003; 39(1):13–25.

    PubMed  CAS  Google Scholar 

  68. Seo S, Richardson GA, Kroll KL. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2005; 132(1):105–115.

    PubMed  CAS  Google Scholar 

  69. Lessard J, Wu JI, Ranish JA et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 2007; 55(2):201–215.

    PubMed  CAS  Google Scholar 

  70. Pakkenberg B, Pelvig D, Marner L et al. Aging and the human neocortex. Exp Gerontol 2003; 38(1–2):95–99.

    PubMed  Google Scholar 

  71. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14:453–501.

    PubMed  CAS  Google Scholar 

  72. Rehen SK, McConnell MJ, Kaushal D et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Nat Acad Sci U S A 2001; 98(23):13361–13366.

    CAS  Google Scholar 

  73. Rehen SK, Yung YC, McCreight MP et al. Constitutional aneuploidy in the normal human brain. J Neurosci 2005; 25(9):2176–2180.

    PubMed  CAS  Google Scholar 

  74. Kingsbury MA, Friedman B, McConnell MJ et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Nat Acad Sci U S A 2005; 102(17):6143–6147.

    CAS  Google Scholar 

  75. Muotri AR, Chu VT, Marchetto MCN et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005; 435(7044):903–910.

    PubMed  CAS  Google Scholar 

  76. Coufal NG, Garcia-Perez JL, Peng GE et al. L1 retrotransposition in human neural progenitor cells. Nature 2009; 460(7259):1127–31.

    PubMed  CAS  Google Scholar 

  77. Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu Rev Pharmacol 1999; 39:221–241.

    CAS  Google Scholar 

  78. Tabuchi A, Nakaoka R, Amano K et al. Differential activation of brain-derived neurotrophic factor gene promoters I and III by Ca2+ signals evoked via L-type voltage-dependent and N-methyl-D-aspartate receptor Ca2+ channels. J Biol Chem 2000; 275(23):17269–17275.

    PubMed  CAS  Google Scholar 

  79. Guan Z, Giustetto M, Lomvardas S et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002; 111(4):483–93.

    PubMed  CAS  Google Scholar 

  80. Levenson JM, O’Riordan KJ, Brown KD et al. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004; 279(39):40545–59.

    PubMed  CAS  Google Scholar 

  81. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35(4):605–23.

    PubMed  CAS  Google Scholar 

  82. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000; 97(26):14400–5.

    PubMed  CAS  Google Scholar 

  83. Levenson JM, Sweatt JD. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci 2006; 63(9):1009–16.

    PubMed  CAS  Google Scholar 

  84. Martinowich K, Hattori D, Wu H et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302(5646):890–3.

    PubMed  CAS  Google Scholar 

  85. Chen WG, Chang Q, Lin Y et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302(5646):885–9.

    PubMed  CAS  Google Scholar 

  86. Chwang WB, O’Riordan KJ, Levenson JM et al. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 2006; 13(3):322–8.

    PubMed  CAS  Google Scholar 

  87. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007; 53(6):857–69.

    PubMed  CAS  Google Scholar 

  88. Dong E, Guidotti A, Grayson DR et al. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci U S A 2007; 104(11):4676–81.

    PubMed  CAS  Google Scholar 

  89. Ausió J, Levin DB, de Amorim GV et al. Syndromes of disordered chromatin remodeling. Clin Genet 2003; 64(2):83–95.

    PubMed  Google Scholar 

  90. Tsankova N, Renthal W, Kumar A et al. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8(5):355–367.

    PubMed  CAS  Google Scholar 

  91. Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 2006; 16(3):276–281.

    PubMed  Google Scholar 

  92. Amir RE, Van Den Veyver IB, Wan M et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23(2):185–188.

    PubMed  CAS  Google Scholar 

  93. Nan X, Hou J, Maclean A et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Nat Acad Sci U S A 2007; 104(8):2709–2714.

    CAS  Google Scholar 

  94. Collins AL, Levenson JM, Vilaythong AP et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 2004; 13(21):2679–89.

    PubMed  CAS  Google Scholar 

  95. Murata T, Kurokawa R, Krones A et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 2001; 10(10):1071–1076.

    PubMed  CAS  Google Scholar 

  96. Alarcón JM, Malleret G, Touzani K et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/-mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004; 42(6):947–959.

    PubMed  Google Scholar 

  97. Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 2001; 276(17):13505–8.

    PubMed  CAS  Google Scholar 

  98. Sassone-Corsi P, Mizzen CA, Cheung P et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 1999; 285(5429):886–891.

    PubMed  CAS  Google Scholar 

  99. Crosio C, Heitz E, Allis CD et al. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 2003; 116(24):4905–4914.

    PubMed  CAS  Google Scholar 

  100. Grayson DR, Chen Y, Costa E et al. The human reelin gene: transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia. Pharmacol Ther 2006; 111(1):272–86.

    PubMed  CAS  Google Scholar 

  101. Dong E, Agis-Balboa RC, Simonini MV et al. Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci U S A 2005; 102(35):12578–83.

    PubMed  CAS  Google Scholar 

  102. Li J, Guo Y, Schroeder FA et al. Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. J Neurochem 2004; 90(5):1117–31.

    PubMed  CAS  Google Scholar 

  103. Casey DE, Daniel DG, Wassef AA et al. Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacol 2003; 28(1):182–92.

    CAS  Google Scholar 

  104. Tremolizzo L, Doueiri MS, Dong E et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiat 2005; 57(5):500–9.

    PubMed  CAS  Google Scholar 

  105. Yamagata K. Capturing epigenetic dynamics during pre-implantation development using live cell imaging. J Biochem 2008; 143(3):279–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario F. Fraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Calvanese, V., Lara, E., Fraga, M.F. (2012). Epigenetic Code and Self-Identity. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_14

Download citation

Publish with us

Policies and ethics