Skip to main content

Attacking and Defending a Diabetes Therapy System

  • Chapter
  • First Online:
Security and Privacy for Implantable Medical Devices

Abstract

Wearable and implantable medical devices are being increasingly deployed to improve diagnosis, monitoring, and therapy for a range of medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 2007 national diabetes fact sheet, http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf.

  2. Experiences with insulin pump in 52 patients, http://professional.diabetes.org/abstracts_display.aspx?typ=1\&cid=70361.

  3. GNU radio, http://www.gnu.org/software/gnuradio/.

  4. Hacker shows off lethal attack by controlling wireless medical device, http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-%by-controlling-wireless-medical-device/.

    Google Scholar 

  5. Insulin pumps - global pipeline analysis, opportunity assessment and market forecasts to 2016, http://www.globaldata.com.

  6. US healthcare equipment and supplies – diabetes, http://www.research.hsbc.com.

  7. USRP, http://www.ettus.com/.

  8. A. I. Alrabady and S. M. Mahmud. Analysis of attacks against the security of keyless-entry systems for vehicles and suggestions for improved designs. IEEE Trans. Vehicular Technology, 54:41–50, Jan. 2005.

    Article  Google Scholar 

  9. H. Baldus, S. Corroy, A. Fazzi, K. Klabunde, and T. Schenk. Human-centric connectivity enabled by body-coupled communications. IEEE Communications Magazine, 47:172–178, June 2009.

    Article  Google Scholar 

  10. S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. They can hear your heartbeats: Non-invasive security for implantable medical devices. In Proc. ACM Conf. Special Interest Group on Data Communication, Aug. 2011.

    Google Scholar 

  11. D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In Proc. IEEE Symp. Security and Privacy, pages 129–142, May 2008.

    Google Scholar 

  12. N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. Computer, 26: 18–41, July 1993.

    Article  Google Scholar 

  13. C. Li, A. Raghunathan, and N. K. Jha. Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system. In Proc. IEEE Int. Conf. on e-Health Networking Applications and Services, pages 150–156, June 2011.

    Google Scholar 

  14. M. Novotny and T. Kasper. Cryptanalysis of KeeLoq with COPACOBANA. In Proc. Wkshp. Special Purpose Hardware for Attacking Cryptographic Systems, pages 159–164, Sept. 2009.

    Google Scholar 

  15. J. Radcliffe. Hacking medical devices for fun and insulin: Breaking the human SCADA System. In Proc. Black Hat Technical Security Conference, July-Aug. 2011.

    Google Scholar 

  16. C. H. Raine, L. E. Schrock, S. V. Edelman, S. R. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes. Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters. J. Diabetes Science and Technology, 1(2):205–210, Mar. 2007.

    Google Scholar 

  17. F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li. IMDGuard: Securing implantable medical devices with the external wearable guardian. In Proc. IEEE Int. Conf. Computer Communications, pages 1862–1870, Apr. 2011.

    Google Scholar 

  18. H.-J. Yoo, S.-J. Song, N. Cho, and H.-J. Kim. Low energy on-body communication for BSN. In Proc. Int. Wkshp. Wearable and Implantable Body Sensor Networks, pages 15–20, Mar. 2007.

    Google Scholar 

  19. M. Zhang, A. Raghunathan, and N. K. Jha. MedMon: Securing medical devices through wireless monitoring and anomaly detection. IEEE Trans. on Biomedical Circuits and Systems, accepted for publication.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation in part under Grant NSF CNS-0914787 and in part under CNS-1219570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj K. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, C., Zhang, M., Raghunathan, A., Jha, N.K. (2014). Attacking and Defending a Diabetes Therapy System. In: Burleson, W., Carrara, S. (eds) Security and Privacy for Implantable Medical Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1674-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1674-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1673-9

  • Online ISBN: 978-1-4614-1674-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics