Skip to main content

Overview of Diagnostic Imaging of Hip Joint

  • Chapter
  • First Online:
Book cover Hip Magnetic Resonance Imaging

Abstract

Since its introduction in the 1970s, MRI has become one of the most powerful imaging tools for musculoskeletal imaging. With state-of-the-art advances in imaging technology, MRI provides remarkable soft tissue contrast with continually improving spatial resolution. MRI is ideally suited to evaluate muscles, tendons, ligaments, and other vital soft tissue structures not easily evaluated by any other imaging technique. MRI does not require ionizing radiation. This is particularly important for patients with chronic conditions who are likely to undergo multiple imaging examinations in their lifetime. With ongoing technologic advancements in MR sequence development, coil manufacturing, and high field strength magnets (e.g., 3.0 T), indications for imaging the hip with MRI continue to expand. It is common for institutions and imaging centers to have a variety of imaging protocols for the hip, utilizing a variety of different coils and often requiring specific magnet strengths (please refer to tables at the end of the chapter for several examples of indication-based protocols). This chapter will focus on the different coils, sequences, and protocols which are useful in imaging the hip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RL. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurologic imaging. Invest Radiol. 2003;38:385–402.

    PubMed  Google Scholar 

  2. MacKenzie JD, Vasanawala SS. State-of-the-art in pediatric body and musculoskeletal magnetic resonance imaging. Semin Ultrasound CT MR. 2010;31:86–99.

    Article  PubMed  Google Scholar 

  3. Chavhan GB, Babyn PS, Singh M, Vidarsson L, Shroff M. MR imaging at 3.0T in children: technical differences, safety issues, and initial experience. Radiographics. 2009;29:1451–66.

    Article  PubMed  Google Scholar 

  4. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0T: relaxation times and image contrast. Am J Roentgenol. 2004;183:343–51.

    Article  Google Scholar 

  5. Schindera ST, Merkle EM, Dale BM, Delong DM, Nelson RC. Abdominal magnetic resonance imaging at 3.0T: what is the ultimate gain in signal-to-noise ratio? Acad Radiol. 2006;13:1236–43.

    Article  PubMed  Google Scholar 

  6. Gold GE, Suh B, Sawyer-Flover A, Beaulieu C. Musculoskeletal MRI at 3.0 T: initial clinical experience. Am J Roentgenol. 2004;183(5):1479–86.

    Article  Google Scholar 

  7. Rubin DA, Kneeland JB. MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield. Am J Roentgenol. 1994;163:1155–63.

    Article  CAS  Google Scholar 

  8. Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol. 2001;30:179–91.

    Article  PubMed  CAS  Google Scholar 

  9. Link TM. MR imaging in osteoarthritis: hardware, coils, and sequences. Radiol Clin North Am. 2009;47(4):617–32.

    Article  PubMed  Google Scholar 

  10. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28:175–80.

    Article  PubMed  Google Scholar 

  11. Gabriel H, Fitzgerald SW, Myers MT, Donaldson JS, Poznanski AK. MR imaging of hip disorders. Radiographics. 1994;14:763–81.

    PubMed  CAS  Google Scholar 

  12. Potter HG, Schachar J. High resolution noncontrast MRI of the hip. J Magn Reson Imaging. 2010;31:268–78.

    Article  PubMed  Google Scholar 

  13. Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38(455):810–24.

    Article  PubMed  CAS  Google Scholar 

  14. Nicholls AS, Kiran A, Pollard TC, et al. The association between hip morphology parameters and nineteen-year risk of end-stage osteoarthritis of the hip: a nested case-control study. Arthritis Rheum. 2011;63(11):3392–400.

    Article  PubMed  Google Scholar 

  15. Pollard TC, Villar RN, Norton MR, et al. Genetic influences in the aetiology of femoroacetabular impingement: a sibling study. J Bone Joint Surg Br. 2010;92:209–16.

    Article  PubMed  CAS  Google Scholar 

  16. Felson DT. Risk factors for osteoarthritis: understanding joint vulnerability. Clin Orthop Relat Res. 2004;(427 Suppl):S16–21.

    Google Scholar 

  17. Mettler FA Jr, Guiberteau MJ. Skeletal system. In: Essentials of nuclear medicine. 5th ed. Philadelphia, PA: Saunders; 2006. pp. 243–244.

    Google Scholar 

  18. Andrews CL. From the RSNA refresher course. Radiological society of North America. Evaluation of the marrow space in the adult hip. Radiographics. 2000;20:S27–42.

    PubMed  Google Scholar 

  19. Meyers SP, Wiender SN. Magnetic resonance imaging features of fractures using the short tau inversion recovery (STIR) sequence: correlation with radiographic findings. Skeletal Radiol. 1991;20:499–507.

    Article  PubMed  CAS  Google Scholar 

  20. Sebag G, Ducou Le Pointe H, Klein I, et al. Dynamic gadolinium-enhanced subtraction MR imaging—a simple technique for the early diagnosis of Legg-Calve-Perthes disease: preliminary results. Pediatr Radiol. 1997;27:216–20.

    Article  PubMed  CAS  Google Scholar 

  21. Kim EY, Kwack KS, Cho JH, Lee DH, Yoon SH. Usefulness of dynamic contrast-enhanced MRI in differentiating between septic arthritis and transient synovitis in the hip joint. Am J Roentgenol. 2012;198:428–33.

    Article  Google Scholar 

  22. Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. Am J Roentgenol. 2009;193:628–38.

    Article  Google Scholar 

  23. Stelzeneder D, Mamisch TC, Kress I, et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthritis Cartilage. 2012;20(7):661–9.

    Article  PubMed  CAS  Google Scholar 

  24. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88(7):1540–8.

    Article  PubMed  Google Scholar 

  25. Philippon MJ, Stubbs AJ, Schenker ML, Mazwell RB, Ganz R, Leunig M. Arthroscopic management of femoroacetabular impingement: osteoplasty technique and literature review. Am J Sports Med. 2007;35:1571–80.

    Article  PubMed  Google Scholar 

  26. Eckstein F, Charles HC, Buck RJ, et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum. 2005;52:3132–6.

    Article  PubMed  Google Scholar 

  27. Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy. 2005;21:385–93.

    Article  PubMed  Google Scholar 

  28. Nishii T, Nakanishi K, Sugano N, Masuhara K, Ohzono K, Ochi T. Articular cartilage evaluation in osteoarthritis if the hip with MR imaging under continuous leg traction. Magn Reson Imaging. 1998;16:871–5.

    Article  PubMed  CAS  Google Scholar 

  29. Jazrawi LM, Alaia MJ, Chang G, FitzGerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19:420–9.

    PubMed  Google Scholar 

  30. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.

    PubMed  CAS  Google Scholar 

  31. Schmid MR, Pfirrmann CW, Koch P, Zanetti M, Kuehn B, Hodler J. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. Am J Roentgenol. 2005;184:1744–8.

    Article  Google Scholar 

  32. Bauer JS, Barr C, Henning TD, et al. Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments. Invest Radiol. 2008;43:604–11.

    Article  PubMed  Google Scholar 

  33. Hardy PA, Recht MP, Piraino D, Thomasson D. Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging. 1996;6:329–35.

    Article  PubMed  CAS  Google Scholar 

  34. Rheum S, Zanetti M, Romero J, Hodler J. MRI of patellar articular cartilage: evaluation of an optimized gradient-echo sequence (3D-DESS). J Magn Reson Imaging. 1998;8:1246–51.

    Article  Google Scholar 

  35. Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2011;78:398–405.

    Article  PubMed  Google Scholar 

  36. Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. Am J Roentgenol. 1997;169:1089–96.

    Article  CAS  Google Scholar 

  37. Ristow O, Steinbach L, Sabo G, et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0T of the knee-image quality and diagnostic performance. Eur Radiol. 2009;19:1263–72.

    Article  PubMed  Google Scholar 

  38. Gold GE, Busse RF, Beehler C, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. Am J Roentgenol. 2007;188:1287–93.

    Article  Google Scholar 

  39. Stevens KJ, Busse RF, Han E, et al. Ankle: isotropic MR imaging with 3D-FSE-cube- initial experience in healthy volunteers. Radiology. 2008;249:1026–33.

    Article  PubMed  Google Scholar 

  40. Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging. 2011;33:758–71.

    Article  PubMed  Google Scholar 

  41. Nakanishi K, Tanaka H, Sugano N, et al. MR-based three-dimensional presentation of cartilage thickness in the femoral head. Eur Radiol. 2001;11:2178–83.

    Article  PubMed  CAS  Google Scholar 

  42. Blankenbaker DG, Ullrick SR, Kijowski R, et al. MR arthrography of the hip: comparison of IDEAL-SPGR volume sequence to standard MR sequences in the detection and grading of cartilage lesions. Radiology. 2011;261:863–71.

    Article  PubMed  Google Scholar 

  43. Gold SL, Burge AJ, Potter HG. MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop Relat Res. 2012;470:3321–31.

    Article  PubMed  Google Scholar 

  44. Mosher TJ, Smith HE, Collins C, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2004;234:245–9.

    Article  PubMed  Google Scholar 

  45. Liess C, Lüsse S, Karger N, Heller M, Glüer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage. 2002;10:907–13.

    Article  PubMed  CAS  Google Scholar 

  46. Bittersohl B, Miese FR, Hosalker HS, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage. 2012;20:653–60.

    Article  PubMed  CAS  Google Scholar 

  47. Wheaton AJ, Dodge GR, Elliott DM, Nicoll SB, Reddy R. Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Magn Reson Med. 2005;54(5):1087–93.

    Article  PubMed  CAS  Google Scholar 

  48. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  49. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85:1987–92.

    Article  PubMed  Google Scholar 

  50. Bittersohl B, Steppacher S, Haamberg T, et al. Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). Osteoarthritis Cartilage. 2009;17:1297–306.

    Article  PubMed  CAS  Google Scholar 

  51. Mamisch TC, Kain MS, Bittersohl B, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoroacetabular impingement. J Orthop Res. 2011;29:1305–11.

    Article  PubMed  Google Scholar 

  52. Petersilge CA. Current concepts of MR arthrography of the hip. Semin Ultrasound CT MR. 1997;18:291–301.

    Article  PubMed  CAS  Google Scholar 

  53. Petersilge CA, Haque MA, Petersilge WJ, Lewin JS, Lieberman JM, Buly R. Acetabular labral tears: evaluation with MR arthrography. Radiology. 1996;200:231–5.

    PubMed  CAS  Google Scholar 

  54. Czerny C, Hofmann S, Neuhold A, et al. Lesions of the acetabular labrum.: accuracy of MR imaging and MR arthrography in detection and staging. Radiology. 1996;200:225–30.

    PubMed  CAS  Google Scholar 

  55. Ziegert AJ, Blankenbaker DG, De Smet AA, Keene JS, Shinki K, Fine JP. Comparison of standard hip MR arthrographic imaging planes and sequences for detection of arthroscopically proven labral tear. Am J Roentgenol. 2009;192:1397–400.

    Article  Google Scholar 

  56. Kubo T, Horii M, Yamaguchi J, et al. Radial magnetic resonance imaging and pathological findings of acetabular labrum in dysplastic hips. Pathophysiology. 2000;7(3):171–5.

    Article  PubMed  Google Scholar 

  57. Abe I, Harada Y, Oinuma K, et al. Acetabular labrum: abnormal findings at MR imaging in asymptomatic hips. Radiology. 2000;216:576–81.

    PubMed  CAS  Google Scholar 

  58. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21:863–74.

    Article  PubMed  Google Scholar 

  59. Schnarkowski P, Steinbach LS, Tirman PFJ, Peterfy CG, Genant HK. Magnetic resonance imaging of labral cysts of the hip. Skeletal Radiol. 1996;25:733–7.

    Article  PubMed  CAS  Google Scholar 

  60. Magee T, Hinson G. Association of paralabral cysts with acetabular disorders. Am J Roentgenol. 2000;174:1381–4.

    Article  CAS  Google Scholar 

  61. Menezes NM, Connolly SA, Shapiro F, et al. Early ischemia in growing piglet skeleton: MR diffusion and perfusion imaging. Radiology. 2007;242:129–36.

    Article  PubMed  Google Scholar 

  62. Jaramillo D, Connolly SA, Vajapeyam S, et al. Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology. 2003;227:825–32.

    Article  PubMed  Google Scholar 

  63. Merlini L, Combescure C, De Rosa V, Anooshiravani M, Hanquinet S. Diffusion-weighted imaging findings in Perthes disease with dynamic gadolinium-enhanced subtraceted (DGS) MR correlation: a preliminary study. Pediatr Radiol. 2010;40:318–25.

    Article  PubMed  Google Scholar 

  64. MacKenzie JD, Hernandez A, Pena A, et al. Magnetic resonance imaging in children with sickle cell disease-detecting alterations in the apparent diffusion coefficient in hips with avascular necrosis. Pediatr Radiol. 2012;42:706–13.

    Article  PubMed  Google Scholar 

  65. Einarsdottir H, Karlsson M, Wejde J, Bauer HC. Diffusion-weighted MRI of soft tissue tumors. Eur Radiol. 2004;14(6):959–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah D. Bixby MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bixby, S.D. (2014). Overview of Diagnostic Imaging of Hip Joint. In: Kim, YJ., Mamisch, T. (eds) Hip Magnetic Resonance Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1668-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1668-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1667-8

  • Online ISBN: 978-1-4614-1668-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics