Skip to main content

Identification Without Exogeneity Under Equiconfounding in Linear Recursive Structural Systems

  • Chapter
  • First Online:
Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis
  • 1302 Accesses

Abstract

This chapter obtains identification of structural coefficients in linear recursive systems of structural equations without requiring that observable variables are exogenous or conditionally exogenous. In particular, standard instrumental variables and control variables need not be available in these systems. Instead, we demonstrate that the availability of one or two variables that are equally affected by the unobserved confounder as is the response of interest, along with exclusion restrictions, permits the identification of all the system’s structural coefficients. We provide conditions under which equiconfounding supports either full identification of structural coefficients or partial identification in a set consisting of two points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Standard instruments are uncorrelated with the unobserved confounder whereas conditioning on control variables renders the causes of interest uncorrelated with the confounder.

  2. 2.

    Shape restrictions have been employed in a variety of different contexts. For example, Matzkin (1992) employs shape restrictions to secure identification in nonparametric binary threshold crossing models with exogeneity.

  3. 3.

    This chapter considers linear recursive structural systems. Recursiveness rules out “simultaneity” permitting distinguishing the vectors of primary interest \(X\) and \(Y\) as the observed direct causes and responses, respectively. In particular, elements of \(Y\) are assumed to not cause elements of \(X\). While mutual causality is absent here, endogeneity arises due to the confounder \(U\) jointly driving the causes \(X\) and responses \(Y\).

References

  • Altonji, J., T. Conley, T. Elder, and C. Taber (2011), “Methods for Using Selection on Observed Variables to Address Selection on Unobserved Variables”, Yale University Department of Economics Working Paper.

    Google Scholar 

  • Baltagi, B. (1999). Econometrics, 2nd Edition. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Blackburn, M. and D. Neumark (1992), “Unobserved Ability, Efficiency Wages, and Interindustry Wage Differentials”, The Quarterly Journal of Economics, 107, 1421–1436.

    Google Scholar 

  • Chalak, K. and H. White (2011), “An Extended Class of Instrumental Variables for the Estimation of Causal Effects”, Canadian Journal of Economics, 44, 1–51.

    Article  Google Scholar 

  • Chamberlain, G. (1977), “Education, Income, and Ability Revisited”, Journal of Econometrics, 241–257.

    Google Scholar 

  • Frisch, R. and F. Waugh (1933), “Partial Regressions as Compared with Individual Trends”, Econometrica, 1, 939–953.

    Article  Google Scholar 

  • Galvao, A., G. Montes-Rojasz, and S. Song (2012), “Endogeneity Bias Modeling Using Observables”, University of Wisconsin-Milwaukee Department of Economics Working Paper.

    Google Scholar 

  • Griliches, Z. (1977), “Estimating the Returns to Schooling: Some Econometric Problems”, Econometrica, 45, 1–22.

    Article  Google Scholar 

  • Hausman, J. and W. Taylor (1983), “Identification in Linear Simultaneous Equations Models with Covariance Restrictions: An Instrumental Variables Interpretation”, Econometrica, 51, 1527–1550.

    Google Scholar 

  • Hoderlein, H., L. Su, and H. White (2011), “Specification Testing for Nonparametric Structural Models with Monotonicity in Unobservables”, UCSD Department of Economics Working Paper.

    Google Scholar 

  • Lewbel, A. (2010), “Using Heteroskedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models”, Journal of Business and Economic Statistics, forthcoming.

    Google Scholar 

  • Lovell, M., (1963), “Seasonal adjustment of economic time series," Journal of the American Statistical Association, 993–1010.

    Google Scholar 

  • Matzkin, R. L. (1992), “Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models”, Econometrica, 60, 239–270.

    Article  Google Scholar 

  • Mincer, J., (1974). Schooling, Experience, and Earning. New York: National Bureau of Economic Research.

    Google Scholar 

  • White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity”, Econometrica, 48, 817–838.

    Article  Google Scholar 

  • White, H. (2001). Asymptotic Theory for Econometricians. New York: Academic Press.

    Google Scholar 

  • White, H. and K. Chalak (2010), “Testing a Conditional Form of Exogeneity”, Economics Letters, 109, 88–90.

    Article  Google Scholar 

  • White and Chalak (2011), “Identification and Identification Failure for Treatment Effects using Structural Systems”, Econometric Reviews, forthcoming.

    Google Scholar 

  • White H. and X. Lu (2011a), “Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection”, Review of Economics and Statistics, 93, 1453–1459.

    Article  Google Scholar 

  • White H. and X. Lu (2011b), “Robustness Checks and Robustness Tests in Applied Economics”, UCSD Department of Economics Working Paper.

    Google Scholar 

  • Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press.

    Google Scholar 

Download references

Acknowledgments

The author thanks participants of the Boston College Research in Econometrics Workshop and the Boston University/Boston College Green Line Econometrics Conference as well as Susanto Basu, McKinley Blackburn, Xiaohong Chen, Peter Gotschalk, Hiroaki Kaido, Arthur Lewbel, David Neumark, Jeffrey Wooldridge, an anonymous referee, and especially Halbert White for helpful discussions and suggestions. I also thank Lucrezio Figurelli and Michael Smith for their research assistance and Tao Yang for his help in the preparation of this manuscript. Any errors are solely the author’s responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Chalak .

Editor information

Editors and Affiliations

Appendices

Appendix A: Mathematical Proofs

Proof of Theorem

3.1\((i)\ \)Given that the structural coefficients of \(S_{1}\) are finite and that \(E(U^{2})\) and \( E(U_{x}U_{x}^{\prime })\ \)exist and are finite, the following moments exist and are finite:

$$\begin{aligned} E(XX^{\prime })&=\left[ \begin{array}{cc} \phi _{u}E(U^{2})\phi _{u}^{\prime }+\alpha _{x}E(U_{x}U_{x}^{\prime })\alpha _{x},&0 \\ 0,&1 \end{array}\right] \\ E(ZX^{\prime })&=\alpha _{u}E(UX^{\prime })=[ \alpha _{u}E(U^{2})\phi _{u}^{\prime }, 0 ] \\ E(YX^{\prime })&=\beta _{o}E(XX^{\prime })+\alpha _{u}E(UX^{\prime })=\beta _{o}E(XX^{\prime })+[ \alpha _{u}E(U^{2})\phi _{u}^{\prime },&0 ]. \end{aligned}$$

\((ii)\) Substituting for \(\alpha _{u}U\) in \((3)\) with its expression from \( (1) \), \(\alpha _{u}U=Z-\alpha _{z}U_{z},\) gives

$$\begin{aligned} Y-Z=\beta _{o}X-\alpha _{z}U_{z}+\alpha _{y}U_{y},\text{ and} \text{ thus}\;E[(Y-Z)X^{\prime }]=\beta _{o}E(XX^{\prime }). \end{aligned}$$

It follows from the nonsingularity of \(E(XX^{\prime })\) that \(\beta _{o}\) is point identified as

$$\begin{aligned} \beta _{o}=\pi _{y-z.x}\equiv E[(Y-Z)X^{\prime }]E(XX^{\prime })^{-1}. \square \end{aligned}$$

Proof of Theorem

4.1\((i) \) Given that the structural coefficients of \(\mathcal S _{2}\) are finite and that \(E(U^{2})\) and \(E(U_{x}U_{x}^{\prime })\) exist and are finite, we have that

$$\begin{aligned} E(XX^{\prime })&=\left[ \begin{array}{cc} \eta _{u}E(U^{2})\eta _{u}^{\prime }+\alpha _{x}E(U_{x}U_{x}^{\prime })\alpha _{x}^{\prime },&0 \\ 0,&1 \end{array} \right], \quad \mathrm{and} \\ E(YX^{\prime })&=\beta _{o}E(XX^{\prime })+[ \begin{array}{llll} \alpha _{u}E(UX_{1}^{\prime }),&\alpha _{u}E(UX_{2}^{\prime }),&\alpha _{u}E(UX_{31}^{\prime }),&\alpha _{u}E(U) \end{array}] \\&=\beta _{o}E(XX^{\prime })+[ \begin{array}{llll} \alpha _{u}^{2}E(U^{2}),&\alpha _{u}^{2}E(U^{2}),&\alpha _{u}E(U^{2})\phi _{u}^{\prime },&0 \end{array}] \end{aligned}$$

exist and are finite. \((ii)\) Further, \(\alpha _{u}^{2}E(U^{2})\) is identified by \(\alpha _{u}^{2}E(U^{2})=E(X_{2}X_{1}^{\prime })\) and \(\phi _{u}E(U^{2})\alpha _{u}\) is overidentified by \(\phi _{u}E(U^{2})\alpha _{u}=E(X_{31}X_{1}^{\prime })=E(X_{31}X_{2}^{\prime })\). Given that \( E(XX^{\prime })\) is nonsingular, it follows that \(\beta _{o}\) is fully (over)identified by

$$\begin{aligned} \beta _{o}&=\beta _{JC}^{*}\equiv \pi _{y.x}-[ \begin{array}{lll} E(X_{2}X_{1}^{\prime }),&E(X_{2}X_{1}^{\prime }),&E(X_{1}X_{3}^{\prime }) \end{array} ]E(XX^{\prime })^{-1} \\&=\beta _{JC}^{\dag }\equiv \pi _{y.x}-[ \begin{array}{lll} E(X_{2}X_{1}^{\prime }),&E(X_{2}X_{1}^{\prime }),&E(X_{2}X_{3}^{\prime }) \end{array} ]E(XX^{\prime })^{-1}.\square \end{aligned}$$

Proof of Theorem

5.1\((i)\) Given that the structural coefficients of \(\mathcal S _{3}\) and \(E(U^{2})\) and \( E(U_{x}U_{x}^{\prime })\) exist and are finite we have

$$\begin{aligned} E(XX^{\prime })&=\left[ \begin{array}{cc} \eta _{u}E(U^{2})\eta _{u}^{\prime }+\alpha _{x}E(U_{x}U_{x}^{\prime })\alpha _{x}^{\prime },&0 \\ 0,&1 \end{array} \right],\quad \mathrm{and} \\ E(YX^{\prime })&=\beta _{o}E(XX^{\prime })+\alpha _{u}\iota _{p}[\begin{array}{ll} E(UX_{1}^{\prime }),&E(UX_{2}^{\prime }) \end{array}] \\&=\beta _{o}E(XX^{\prime })+\iota _{p}[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&[\begin{array}{ll} \alpha _{u}E(U^{2})\phi _{u}^{\prime },&0 \end{array}]\end{array}] \end{aligned}$$

exists and are finite.

\((ii.a)\) Given that \(E(X_{1}X_{1}^{\prime })\) and \(E(X_{2}X_{2}^{\prime })\) are nonsingular, we have

$$\begin{aligned} P_{x_{1}}&\equiv E(\epsilon _{x_{1}.x_{2}}\epsilon _{x_{1}.x_{2}}^{\prime })=E(\epsilon _{x_{1}.x_{2}}X_{1}^{\prime })=E(X_{1}X_{1}^{\prime })-\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime })\quad \mathrm{and } \\ P_{x_{2}}&\equiv E(\epsilon _{x_{2}.x_{1}}\epsilon _{x_{2}.x_{1}}^{\prime })=E(\epsilon _{x_{2}.x_{1}}X_{2}^{\prime })=E(X_{2}X_{2}^{\prime })-\pi _{x_{2}.x_{1}}E(X_{1}X_{2}^{\prime }) \end{aligned}$$

exist and are finite. \((ii.b)\) If also \(P_{x_{1}}\) and \(P_{x_{2}}\) are nonsingular, then \(E(XX^{\prime })^{-1}\) exists, is finite, and is given by (e.g., Baltagi 1999, p. 185):

$$\begin{aligned} E(XX^{\prime })^{-1}=\left[ \begin{array}{cc} E(X_{1}X_{1}^{\prime }),&E(X_{1}X_{2}^{\prime }) \\ E(X_{2}X_{1}^{\prime }),&E(X_{2}X_{2}^{\prime }) \end{array} \right] ^{-1}=\left[ \begin{array}{cc} P_{x_{1}}^{-1},&-\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1} \\ -\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1},&P_{x_{2}}^{-1} \end{array} \right] , \end{aligned}$$

with \(P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}=\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}.\) It follows that \(\pi _{y.x}\) exists and is finite. To show that

$$\begin{aligned} E(\epsilon _{y_{1}.x}Y_{2}^{\prime })=E(Y_{1}Y_{2}^{\prime })-E(Y_{1}X^{\prime })E(XX^{\prime })^{-1}E(XY_{2}^{\prime }) \end{aligned}$$

exists and is finite, note that

$$\begin{aligned} E(YY^{\prime })&=E[(\beta _{o}X+\alpha _{u}\iota _{p}U+\alpha _{y}U_{y})(\beta _{o}X+\alpha _{u}\iota _{p}U+\alpha _{y}U_{y})^{\prime }] \\&=\beta _{o}E(XX^{\prime })\beta _{o}^{\prime }+\beta _{o}E(XU)\iota _{p}^{\prime }\alpha _{u}^{\prime }+\alpha _{u}\iota _{p}E(UX^{\prime })\beta _{o}^{\prime }\\&\quad +\iota _{p}\iota _{p}^{\prime }\alpha _{u}^{2}E(U^{2})+\alpha _{y}E(U_{y}U_{y}^{\prime })\alpha _{y}^{\prime }. \end{aligned}$$

Substituting for the diagonal term \(E(Y_{1}Y_{2}^{\prime })\) in the above expression for \(E(\epsilon _{y_{1}.x}Y_{2}^{\prime })\) then gives

$$\begin{aligned} E(\epsilon _{y_{1}.x} Y_{2}^{\prime })&=\beta _{1o} E(XX^{\prime })\beta _{2o}^{\prime } +\beta _{1o} \alpha _{u}E(XU)+\alpha _{u}E(UX^{\prime })\beta _{2o}^{\prime } \\&\quad + \alpha _{u}^{2}E(U^{2})-E(Y_{1}X^{\prime })E(XX^{\prime })^{-1}E(XY_{2}^{\prime }), \end{aligned}$$

and thus \(E(\epsilon _{y_{1}.x} Y_{2}^{\prime })\) exists and is finite given that \(\alpha _{u}E(UX^{\prime })=[\alpha _{u}^{2}E(U^{2}), [\alpha _{u}E(U^{2})\phi _{u}^{\prime }, 0]].\)

\((ii.c)\) Next, we have that

$$\begin{aligned} \Delta _{JR}=[2P_{{x}_{1}}^{-1}E(X_{1} X_{1}^{\prime })-1]^{2}-4P_{{x}_{1}}^{-1}[E(X_{1} X_{2}^{\prime })P_{{x}_{2}}^{-1}E(X_{2} X_{1}^{\prime })+E(\epsilon _{{y}_{1}.x} Y_{2}^{\prime })], \end{aligned}$$

exists and is finite as it is a function of finite moments and coefficients. We now show that \(\Delta _{JR}\) is nonnegative. Given the nonsingularity of \( E(XX^{\prime })\), substituting for

$$\begin{aligned} \beta _{o}=[E(YX^{\prime })-\alpha _{u}\iota _{p}E(UX^{\prime })]E(XX^{\prime })^{-1}, \end{aligned}$$

in the expression for \(E(YY^{\prime })\) gives

$$\begin{aligned} E(YY^{\prime })&=[E(YX^{\prime })-\alpha _{u}\iota _{p}E(UX^{\prime })]E(XX^{\prime })^{-1}E(XX^{\prime })E(XX^{\prime })^{-1}[E(XY^{\prime }) \\&\quad -E(XU^{\prime })\iota _{p}^{\prime }\alpha _{u}^{\prime }]+[E(YX^{\prime })-\alpha _{u}\iota _{p}E(UX^{\prime })]E(XX^{\prime })^{-1}E(XU)\iota _{p}^{\prime }\alpha _{u}^{\prime } \\&\quad +\alpha _{u}\iota _{p}E(UX^{\prime })E(XX^{\prime })^{-1}[E(XY^{\prime })-E(XU)\iota _{p}^{\prime }\alpha _{u}^{\prime }]\\&\quad +\iota _{p}\iota _{p}^{\prime }\alpha _{u}^{2}E(U^{2})+\alpha _{y}E(U_{y}U_{y}^{\prime })\alpha _{y}^{\prime } \\&=E(YX^{\prime })E(XX^{\prime })^{-1}E(XY^{\prime })-\alpha _{u}\iota _{p}E(UX^{\prime })E(XX^{\prime })^{-1}E(XU^{\prime })\iota _{p}^{\prime }\alpha _{u}^{\prime } \\&\quad +\iota _{p}\iota _{p}^{\prime }\alpha _{u}^{2}E(U^{2})+\alpha _{y}E(U_{y}U_{y}^{\prime })\alpha _{y}^{\prime }. \end{aligned}$$

The off-diagonal term then gives

$$\begin{aligned} E(\epsilon _{y_{1}.x}Y_{2}^{\prime })&=E(Y_{1}Y_{2}^{\prime })-E(Y_{1}X^{\prime })E(XX^{\prime })^{-1}E(XY_{2}^{\prime }) \\&=\alpha _{u}^{2}E(U^{2})-\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}E(XU^{\prime })\alpha _{u}^{\prime } \end{aligned}$$

Substituting for \(\alpha _{u}E(UX^{\prime })=[\alpha _{u}^{2}E(U^{2}), [\alpha _{u}E(U^{2})\phi _{u}^{\prime }, 0]] =[\alpha _{u}^{2}E(U^{2}),E(X_{1}X_{2}^{\prime })]\) gives

$$\begin{aligned}&\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}E(XU)\alpha _{u}^{\prime } \\&\qquad =[\alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime })]\left[ \begin{array}{cc}P_{x_{1}}^{-1},&-\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1} \\ -\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1},&P_{x_{2}}^{-1}\end{array}\right] [\alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime })]^{\prime } \\&\qquad =\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}-E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2}) \\&\qquad \qquad -\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime }). \end{aligned}$$

Thus, we expand the term \(E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(\epsilon _{y_{1}.x}Y_{2}^{\prime }) \) in \(\Delta _{JR}\) as:

$$\begin{aligned}&E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(\epsilon _{y_{1}.x}Y_{2}^{\prime }) \\&\qquad =E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+\alpha _{u}^{2}E(U^{2})-\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1} \\&\qquad \qquad +E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})+\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })\\&\qquad \qquad -E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime }) \\&\qquad =-\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}+ \alpha _{u}^{2}E(U^{2})[2P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime })+1]\\&\qquad =-\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}+\alpha _{u}^{2}E(U^{2})[2P_{x_{1}}^{-1}[E(X_{1}X_{1}^{\prime })-P_{x_{1}}]+1] \\&\qquad =-\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}+\alpha _{u}^{2}E(U^{2})[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1] \end{aligned}$$

where we use \(P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}=\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}\) and \(P_{x_{1}}=E(X_{1}X_{1}^{\prime })-\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime })\). Then

$$\begin{aligned} \Delta _{JR}&\equiv [2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1]^{2}-4P_{x_{1}}^{-1}[E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(\epsilon _{y_{1}.x}Y_{2}^{\prime })] \\&=[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1]^{2}+4\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-2}\\&\qquad -4P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1] \\&=\{[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1]-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})\}^{2}\ge 0. \end{aligned}$$

\((iii)\) We begin by showing that

$$\begin{aligned}&\mathrm{Var}(\alpha _{x_{1}}U_{x_{1}})+\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)^{\prime }\nonumber \\&\qquad \qquad {\times }\,[\mathrm{Var}(\phi _{u}U)+\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})]^{-1}\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)-\mathrm{Var}(\alpha _{u}U) \end{aligned}$$
(A.1)

has the same sign as the expression \(2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})\) from \(\Delta _{JR}.\) First, clearly, () can be negative, zero, or positive (e.g., set \(\dim (X_{21})=1\), \(\mathrm{Var}(\alpha _{x_{1}}U_{x_{1}})=1,\) and \(\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})=\mathrm{Var}(\phi _{u}U)=\frac{1}{2}.\) Then () reduces to \(1-\frac{1}{2}\mathrm{Var}(\alpha _{u}U)\) with sign depending on \(\mathrm{Var}(\alpha _{u}U)\)). Next, multiplying this expression by \(P_{x_{1}}\equiv E(\epsilon _{x_{1}.x_{2}}\epsilon _{x_{1}.x_{2}}^{\prime })\) preserves its sign and we obtain

$$\begin{aligned}&2E(X_{1}X_{1}^{\prime })-P_{x_{1}}-2\alpha _{u}^{2}E(U^{2}) \\&=2E(X_{1}X_{1}^{\prime })-[E(X_{1}X_{1}^{\prime })-E(X_{1}X_{2}^{\prime })E(X_{2}X_{2}^{\prime })^{-1}E(X_{2}X_{1}^{\prime })]-2\alpha _{u}^{2}E(U^{2}) \\&=E(X_{1}X_{1}^{\prime })+E(X_{1}X_{2}^{\prime })E(X_{2}X_{2}^{\prime })^{-1}E(X_{2}X_{1}^{\prime })-2\alpha _{u}^{2}E(U^{2}). \end{aligned}$$

But we have

$$\begin{aligned} E(X_{1}X_{1}^{\prime })&=\alpha _{u}^{2}E(U^{2})+\alpha _{x_{1}}E(U_{x_{1}}U_{x_{1}}^{\prime })\alpha _{x_{1}}^{\prime }\;\text{ and}\\ E(X_{2}X_{2}^{\prime })&=\left[\begin{array}{cc} \phi _{u}E(UU^{\prime })\phi _{u}^{\prime }+\alpha _{x_{2}}E(U_{x_{2}}U_{x_{2}}^{\prime })\alpha _{x_{2}}^{\prime },&0 \\ 0,&1\end{array}\right]. \end{aligned}$$

Then using \([\begin{array}{ll}\alpha _{u}E(U^{2})\phi _{u}^{\prime },&0\end{array} ]=E(X_{1}X_{2}^{\prime })\) gives

$$\begin{aligned}&E(X_{1}X_{1}^{\prime })+E(X_{1}X_{2}^{\prime })E(X_{2}X_{2}^{\prime })^{-1}E(X_{2}X_{1}^{\prime })-2\alpha _{u}^{2}E(U^{2}) \\&\qquad =\alpha _{u}^{2}E(U^{2})+\alpha _{x_{1}}E(U_{x_{1}}U_{x_{1}}^{\prime })\alpha _{x_{1}}^{\prime } +\left[\begin{array}{cc}\alpha _{u}E(U^{2})\phi _{u}^{\prime },&0 \end{array}\right]\\&\qquad \qquad {\times }\left[\begin{array}{cc}\phi _{u}E(UU^{\prime })\phi _{u}^{\prime }+\alpha _{x_{2}}E(U_{x_{2}}U_{x_{2}}^{\prime })\alpha _{x_{2}}^{\prime },&0 \\ 0,&1\end{array}\right]^{-1}\left[\begin{array}{c}\phi _{u}E(U^{2})\alpha _{u} \\ 0 \end{array}\right]-2\alpha _{u}^{2}E(U^{2}) \\&\qquad =\mathrm{Var}(\alpha _{x_{1}}U_{x_{1}})+\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)^{\prime }[\mathrm{Var}(\phi _{u}U)+\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})]^{-1}\\&\qquad \qquad {\times }\;\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)-\mathrm{Var}(\alpha _{u}U). \end{aligned}$$

\((iii.a)\) Now, recall from \((ii.c)\) that

$$\begin{aligned} \Delta _{JR}=\{[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1]-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})\}^{2}. \end{aligned}$$

Suppose that (3) is negative, then

$$\begin{aligned} \sqrt{\Delta _{JR}}&= \left|2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})\right|\\&= -2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })+1+2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and we have

$$\begin{aligned} \sigma _{JR}^{\dag }&\equiv E(X_{1}X_{1}^{\prime })+\frac{1}{2}P_{x_{1}}(-1-\sqrt{\Delta _{JR}}) \\&=2E(X_{1}X_{1}^{\prime })-P_{x_{1}}-\alpha _{u}^{2}E(U^{2}) \\&=\mathrm{Var}(\alpha _{x_{1}}U_{x_{1}})+\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)^{\prime }[\mathrm{Var}(\phi _{u}U)+\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})]^{-1}\\&\qquad {\times }\;\mathrm{Cov}(\phi _{u}U,\alpha _{u}U) \\&\qquad <\alpha _{u}^{2}E(U^{2}) \text{(and} \ge 0), \end{aligned}$$

and

$$\begin{aligned} \sigma _{JR}^{*}\equiv E(X_{1}X_{1}^{\prime })+\frac{1}{2}P_{x_{1}}(-1+ \sqrt{\Delta _{JR}})=\alpha _{u}^{2}E(U^{2}). \end{aligned}$$

\((iii.b)\) Suppose instead that () is nonnegative then

$$\begin{aligned} \sqrt{\Delta _{JR}}&=\left|2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2})\right|\\&=2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1-2P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and we have

$$\begin{aligned} \sigma _{JR}^{\dag }=\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and

$$\begin{aligned} \sigma _{JR}^{*}&= \mathrm{Var}(\alpha _{x_{1}}U_{x_{1}})+\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)^{\prime }[\mathrm{Var}(\phi _{u}U)\\&\qquad +\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})]^{-1}\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)\\&\ge \,\alpha _{u}^{2}E(U^{2})\ge 0. \end{aligned}$$

Thus, \(\alpha _{u}^{2}E(U^{2})\) is partially identified in the set \(\{\sigma _{JR}^{\dag },\sigma _{JR}^{*}\}\). It follows from the moment

$$\begin{aligned} E(YX^{\prime })=\beta _{o}E(XX^{\prime })+\iota _{p}[ \alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime }) ], \end{aligned}$$

and the nonsingularity of \(E(XX^{\prime })\) that \(\beta _{o}\) is partially identified in the set \(\{\beta _{JR}^{*},\beta _{JR}^{\dag }\}.\)\(\square \)

Proof of Theorem

6.1 \((i)\) We have that

$$\begin{aligned} E(ZZ^{\prime })&=\left[ \begin{array}{cc} \alpha _{u}^{2}E(U^{2}),&0 \\ 0,&1 \end{array} \right], \\ E(XZ^{\prime })&=E\left( \begin{array}{c} [X_{1}^{\prime },X_{21}^{\prime }]^{\prime }Z^{\prime } \\ Z^{\prime } \end{array} \right)=\left[ \begin{array}{c} \gamma _{o}E(ZZ^{\prime })+\left[ \begin{array}{cc} \eta _{u}E(U^{2})\alpha _{u}^{\prime }&0 \end{array}\right] \\ \left[ 0, \quad 1 \right] \end{array}\right], \end{aligned}$$
$$\begin{aligned} E(XX^{\prime })&=\left[\begin{array}{cc} \gamma _{o}E(ZX^{\prime })+\eta _{u}E(UX^{\prime })+\alpha _{x}E(U_{x}X^{\prime }),&E(X) \\ E(X^{\prime }),&1 \end{array}\right] \\&=\left[\begin{array}{cc} \gamma _{o}E(ZX^{\prime })+[[\eta _{u}E(U^{2})\alpha _{u}^{\prime }, 0 ]\gamma _{o}^{\prime }&\\ \qquad +\eta _{u}E(U^{2})\eta _{u}^{\prime }, 0]+\left[\begin{array}{ll}\alpha _{x}E(U_{x}U_{x})^{\prime }\alpha _{x}^{\prime },&0 \end{array}\right],&\left[\begin{array}{cc} 0^{\prime },&1^{\prime } \end{array} \right]^{\prime } \\ \left[ \begin{array}{cc} 0,&1 \end{array}\right],&1 \end{array}\right], \end{aligned}$$
$$\begin{aligned} E(YX^{\prime })&= \beta _{o}E(XX^{\prime })+\alpha _{u}E(UX^{\prime }) =\beta _{o}E(XX^{\prime }) \\&\quad +[[\alpha _{u}^{2}E(U^{2}), 0]\gamma _{1o}^{\prime }+\alpha _{u}^{2}E(U^{2}), [[\alpha _{u}^{2}E(U^{2}), 0]\gamma _{2o}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime }, 0]], \\ E(YZ^{\prime })&= \beta _{o}E(XZ^{\prime })+[\alpha _{u}^{2}E(U^{2}), 0], \end{aligned}$$

Thus, these moments exist and are finite since they are functions of existing finite coefficients and moments.

\((ii.a)\) Given that \(P_{z_{1}}\equiv E(\epsilon _{z_{1}.z_{2}}Z_{1}^{\prime })=E(Z_{1}Z_{1}^{\prime })\) is nonsingular and \(Z_{2}=1\), we have that

$$\begin{aligned} E(ZZ^{\prime })^{-1}=\left[ \begin{array}{cc} P_{z_{1}}^{-1},&-\pi _{z_{2}.z_{1}}^{\prime }P_{z_{2}}^{-1} \\ -\pi _{z_{1}.z_{2}}^{\prime }P_{z_{1}}^{-1},&P_{z_{2}}^{-1} \end{array} \right] =\left[ \begin{array}{cc} E(Z_{1}Z_{1}^{\prime })^{-1}&0 \\ 0&1 \end{array} \right] \end{aligned}$$

is nonsingular and thus \(\pi _{x.z}\) and \(E(\epsilon _{x_{1}.z}X_{2}^{\prime })=E(X_{1}X_{2}^{\prime })-\pi _{x_{1}.z}E(ZX_{2}^{\prime })\) exist and are finite. With \(E(XX^{\prime })\) also nonsingular, \(\pi _{z.x}\) exists and is finite. Also,

$$\begin{aligned} E(\epsilon _{y.x}Z_{1}^{\prime })&= E(Y\epsilon _{z_{1}.x}^{\prime })\\&= \beta _{o}E(X\epsilon _{z_{1}.x}^{\prime })+\alpha _{u}E(U\epsilon _{z_{1}.x}^{\prime })+\alpha _{y}E(U_{y}\epsilon _{z_{1}.x}^{\prime })\\&= \alpha _{u}E(U\epsilon _{z_{1}.x}^{\prime }). \end{aligned}$$

Using \(E(X_{1}X_{2}^{\prime })=\gamma _{1o}E(ZX_{2}^{\prime })+\alpha _{u}E(UX_{2}^{\prime })\) then gives

$$\begin{aligned} E(\epsilon _{y.x}Z_{1}^{\prime })&=\alpha _{u}E(U\epsilon _{z_{1}.x}^{\prime })=\alpha _{u}E(UZ_{1}^{\prime })-\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}E(XZ_{1}^{\prime }) \\&=\alpha _{u}^{2}E(U^{2})-[[\alpha _{u}^{2}E(U^{2}), 0]\gamma _{1o}^{\prime }\\&\qquad +\alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime })-\gamma _{1o}E(ZX_{2}^{\prime })] \pi _{z_{1}.x}^{\prime } \end{aligned}$$

exists and is finite.

\((ii.b)\) We have that \(\Delta _{PC}\) exists and is finite as it is a function of finite coefficients and moments. Next, we verify that \(\Delta _{PC}\ge 0.\) We begin by expanding the term \(E(\epsilon _{y.x}Z_{1}^{\prime })\) in \(\Delta _{PC}\). For this, we substitute for \(\gamma _{1o}\) with

$$\begin{aligned} \gamma _{1o}=\pi _{x_{1}.z}-[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]E(ZZ^{\prime })^{-1}, \end{aligned}$$

in \(-\alpha _{u}E(UX^{\prime })\pi _{z.x}^{\prime }\) which gives

$$\begin{aligned}&-\alpha _{u} E(UX^{\prime })\pi _{z.x}^{\prime }\\&\quad =-[ [\alpha _{u}^{2}E(U^{2}), \quad 0] \gamma _{1o}^{\prime } + \alpha _{u}^{2} E(U^{2}), \quad E(X_{1}X_{2}^{\prime })-\gamma _{1o}E(ZX_{2}^{\prime })]\pi _{z.x}^{\prime } \\&\quad =-[\alpha _{u}^{2}E(U^{2}), \quad 0 ]\pi _{x_{1}.z}^{\prime }\pi _{z.x_{1}|x_{2}}^{\prime }+[ \alpha _{u}^{2}E(U^{2}), \quad 0]E(ZZ^{\prime })^{-1}[ \alpha _{u}^{2}E(U^{2}), \quad 0]^{\prime }\pi _{z.x_{1}|x_{2}}^{\prime } \\&\qquad -\alpha _{u}^{2}E(U^{2})\pi _{z.x_{1}|x_{2}}^{\prime }-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z.x_{2}|x_{1}}^{\prime }-[ \alpha _{u}^{2}E(U^{2}), \quad 0]\pi _{x_{2}.z}^{\prime }\pi _{z.x_{2}|x_{1}}^{\prime } \\&\quad =-\alpha _{u}^{2}E(U^{2})\pi _{x_{1}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{1}|x_{2}}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z.x_{1}|x_{2}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{z.x_{1}|x_{2}}^{\prime }\\&\qquad -E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z.x_{2}|x_{1}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{2}|x_{1}}^{\prime }, \end{aligned}$$

where we make use of \([\begin{array}{ll}\alpha _{u}^{2}E(U^{2}),&0\end{array}]E(ZZ^{\prime })^{-1}[ \begin{array}{ll}\alpha _{u}^{2}E(U^{2}),&0\end{array}]^{\prime }=\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\). Thus,

$$\begin{aligned} E(\epsilon _{y.x}Z_{1}^{\prime })&=\alpha _{u}^{2}E(U^{2})-\alpha _{u}E(UX^{\prime })\pi _{z_{1}.x}^{\prime } \\&=\alpha _{u}^{2}E(U^{2})-\alpha _{u}^{2}E(U^{2})\pi _{x_{1}.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime } \\&\quad -\alpha _{u}^{2}E(U^{2})\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x_{2}|x_{1}}^{\prime } \\&=\alpha _{u}^{2}E(U^{2})-\alpha _{u}^{2}E(U^{2})\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime } \\&\quad -\alpha _{u}^{2}E(U^{2})\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }. \end{aligned}$$

Then

$$\begin{aligned} \Delta _{PC}&\equiv [-\pi _{x.z_{1}|z_{2}}^{\prime }\ \pi _{z_{1}.x}^{\prime }-\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+1]^{2}+4P_{z_{1}}^{-1}\ \pi _{z_{1}.x_{1}|x_{2}}^{\prime }[E(\epsilon _{y.x}Z_{1}^{\prime })\\&\qquad +E(\epsilon _{x_{1}.z}X_{2}^{\prime })\ \pi _{z_{1}.x_{2}|x_{1}}^{\prime }] \\&=[-\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }-\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+1]^{2} \\&\qquad +4P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }[\alpha _{u}^{2}E(U^{2})-\alpha _{u}^{2}E(U^{2})\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime } \\&\qquad +\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{z_{1}.x_{1}|x_{2}}^{\prime } \\&\qquad -E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }+E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }] \\&=\{[\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1]-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})\}^{2}\ge 0. \end{aligned}$$

\((iii)\) Suppose that

$$\begin{aligned} \pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})<0. \end{aligned}$$

Then

$$\begin{aligned} \sqrt{\Delta _{PC}}&=\left|\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})\right|\\&=-\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }-\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+1+2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and thus

$$\begin{aligned} \sigma _{PC}^{\dag }&\equiv \frac{\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-\sqrt{\Delta _{PC}} }{2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }} \\&=\frac{\pi _{x.z}^{\prime }\pi _{z.x}^{\prime }+\pi _{z.x_{1}|x_{2}}^{\prime }-1-P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})}{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}\\ \quad&<\frac{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2}) }{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}=\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and

$$\begin{aligned} \sigma _{PC}^{*}\equiv \frac{\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1+\sqrt{\Delta _{PC}} }{2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}=\alpha _{u}^{2}E(U^{2}). \end{aligned}$$

Now, with \(E(ZZ^{\prime })\) nonsingular, we have

$$\begin{aligned} E(X_{1}Z^{\prime })&=\gamma _{1o}E(ZZ^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}], \text{ or} \\ \gamma _{1o}&=\pi _{x_{1}.z}-[ \begin{array}{ll} \sigma _{PC}^{*},&0 \end{array}]E(ZZ^{\prime })^{-1}. \end{aligned}$$

Further, with \(E(XX^{\prime })\) nonsingular, we have

$$\begin{aligned} E(YX^{\prime })&=\beta _{o}E(XX^{\prime })+\alpha _{u}E(UX^{\prime }),\text{ or} \\ \beta _{o}&=\{E(YX^{\prime })-[[\alpha _{u}^{2}E(U^{2}), 0]\gamma _{1o}^{\prime }\\&\quad +\alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime })- \gamma _{1o}E(ZX_{2}^{\prime })]\}E(XX^{\prime })^{-1}. \end{aligned}$$

Substituting for \(\gamma _{1o}\) gives

$$\begin{aligned}&\left[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}\right] \gamma _{1o}^{\prime }+\alpha _{u}^{2}E(U^{2}) \\&\quad =\left[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}\right] \pi _{x_{1}.z}^{\prime }-\left[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}\right] E(ZZ^{\prime })^{-1}\left[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}\right]^{\prime }+\alpha _{u}^{2}E(U^{2}) \\&\quad =\left[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}\right]\pi _{x_{1}.z}^{\prime }-\alpha _{u}^{4}E(U^{2})^{2}\ P_{z_{1}}^{-1}+\alpha _{u}^{2}E(U^{2}) \\&\quad =\alpha _{u}^{2}E(U^{2})\ (\pi _{x_{1}.z_{1}|z_{2}}^{\prime }-\alpha _{u}^{2}E(U^{2})\ P_{z_{1}}^{-1}+1), \end{aligned}$$

and

$$\begin{aligned}&E(X_{1}X_{2}^{\prime })-\gamma _{1o}E(ZX_{2}^{\prime })\\&\quad =E(X_{1}X_{2}^{\prime })-[\pi _{x_{1}.z}-[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]E(ZZ^{\prime })^{-1}]E(ZX_{2}^{\prime }) \\&\quad =E(\epsilon _{x_{1}.z}X_{2}^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]\pi _{x_{2}.z}^{\prime }=E(\epsilon _{x_{1}.z}X_{2}^{\prime })+\alpha _{u}^{2}E(U^{2})\ \pi _{x_{2}.z_{1}|z_{2}}^{\prime }, \end{aligned}$$

so that

$$\begin{aligned} \beta _{o}&= \pi _{y.x}-[\sigma _{PC}^{*}\ (\pi _{x_{1}.z_{1}|z_{2}}^{\prime }-\sigma _{PC}^{*}\ P_{z_{1}}^{-1}+1), E(\epsilon _{x_{1}.z}X_{2}^{\prime })\\&+\;\sigma _{PC}^{*}\ \pi _{x_{2}.z_{1}|z_{2}}^{\prime }]E(XX^{\prime })^{-1}. \end{aligned}$$

Also, we have

$$\begin{aligned} E(X_{1}X_{21}^{\prime })&=\gamma _{1o}E(ZX_{21}^{\prime })+\alpha _{u}E(UX_{21}^{\prime }) \\&=\gamma _{1o}E(ZX_{21}^{\prime })+\alpha _{u}E(UZ^{\prime })\gamma _{2o}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime } \\&=\gamma _{1o}E(ZX_{21}^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array} ]\gamma _{2o}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime } \text{ and} \\ E(X_{21}Z^{\prime })&=\gamma _{2o}E(ZZ^{\prime })+[ \begin{array}{ll} \phi _{u}E(U^{2})\alpha _{u}^{\prime },&0 \end{array}]. \end{aligned}$$

Substituting for

$$\begin{aligned} \gamma _{2o}=\pi _{x_{21}.z}-[ \begin{array}{ll} \phi _{u}E(U^{2})\alpha _{u}^{\prime },&0 \end{array} ]E(ZZ^{\prime })^{-1} \end{aligned}$$

in the expression for \(E(X_{1}X_{21}^{\prime })\) gives

$$\begin{aligned} E(X_{1}X_{21}^{\prime })&= \gamma _{1o}E(ZX_{21}^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array} ]\pi _{x_{21}.z}^{\prime } \\&\quad -[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array} ]E(ZZ^{\prime })^{-1}[ \begin{array}{ll} \phi _{u}E(U^{2})\alpha _{u}^{\prime },&0 \end{array} ]^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime } \\&= \gamma _{1o}E(ZX_{21}^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]\pi _{x_{21}.z}^{\prime }\\&\quad -\alpha _{u}^{2}E(U^{2})P_{z_{1}}^{-1}\alpha _{u}E(U^{2})\phi _{u}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime }. \end{aligned}$$

Further substituting for \(\gamma _{1o}\) with \([E(X_{1}Z^{\prime })-[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0\end{array}]]E(ZZ^{\prime })^{-1}\) gives

$$\begin{aligned}&E(X_{1}X_{21}^{\prime })-[E(X_{1}Z^{\prime })-[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array} ]]E(ZZ^{\prime })^{-1}E(ZX_{21}^{\prime })-[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array} ]\pi _{x_{21}.z}^{\prime } \\&\quad =-\alpha _{u}^{2}E(U^{2})P_{z_{1}}^{-1}\alpha _{u}E(U^{2})\phi _{u}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime }, \end{aligned}$$

or

$$\begin{aligned} E(X_{1}\epsilon _{x_{21}.z}^{\prime })=-\alpha _{u}^{2}E(U^{2})P_{z_{1}}^{-1}\alpha _{u}E(U^{2})\phi _{u}^{\prime }+\alpha _{u}E(U^{2})\phi _{u}^{\prime }. \end{aligned}$$

Substituting for

$$\begin{aligned} \phi _{u}E(U^{2})\alpha _{u}^{\prime }=E(X_{21}\epsilon _{x_{1}.z}^{\prime })[1-\alpha _{u}^{2}E(U^{2})P_{z_{1}}^{-1}]^{-1} \end{aligned}$$

in the expression for \(\gamma _{2o}\) gives

$$\begin{aligned} \gamma _{2o}&=\pi _{x_{21}.z}-[ \begin{array}{ll} \phi _{u}E(U^{2})\alpha _{u}^{\prime },&0 \end{array} ]E(ZZ^{\prime })^{-1} \\&=\pi _{x_{21}.z}-[ \begin{array}{ll} E(X_{21}\epsilon _{x_{1}.z}^{\prime })[1-\sigma _{PC}^{*}P_{z_{1}}^{-1}]^{-1},&0 \end{array} ]E(ZZ^{\prime })^{-1}. \end{aligned}$$

\((iii.b)\) Suppose instead that

$$\begin{aligned} \pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})\ge 0. \end{aligned}$$

Then

$$\begin{aligned} \sqrt{\Delta _{PC}}&=\left|\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})\right|\\&=\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and thus

$$\begin{aligned} \sigma _{PC}^{\dag }=\alpha _{u}^{2}E(U^{2}), \end{aligned}$$

and

$$\begin{aligned} \sigma _{PC}^{*}&= \frac{\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1-P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})}{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}\\&\ge \frac{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }\alpha _{u}^{2}E(U^{2})}{P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}=\alpha _{u}^{2}E(U^{2}). \end{aligned}$$

It follows that

$$\begin{aligned} \gamma _{1o}&=\gamma _{1}^{\dag }\equiv \pi _{x_{1}.z}-[ \begin{array}{ll} \sigma _{PC}^{\dag },&0 \end{array} ]E(ZZ^{\prime })^{-1}, \\ \gamma _{2o}&=\gamma _{2}^{\dag }\equiv \pi _{x_{2}.z}-[ \begin{array}{ll} E(X_{21}\epsilon _{x_{1}.z}^{\prime })[1-\sigma _{PC}^{\dag }\ P_{z_{1}}^{-1}]^{-1},&0 \end{array} ]E(ZZ^{\prime })^{-1}, \text{ and} \\ \beta _{o}&=\beta ^{\dag }\equiv \pi _{y.x}-[ \sigma _{PC}^{\dag }\ (\pi _{x_{1}.z_{1}|z_{2}}^{\prime }-\sigma _{PC}^{\dag }\ P_{z_{1}}^{-1}+1), E(\epsilon _{x_{1}.z}X_{2}^{\prime })\\&\qquad \qquad \qquad \quad +\sigma _{PC}^{\dag }\ \pi _{x_{2}.z_{1}|z_{2}}^{\prime }]E(XX^{\prime })^{-1}.\square \end{aligned}$$

Appendix B: Constructive Identification

1.1 B.1 Equiconfounded Cause and Joint Responses: Constructive Identification

We present an argument to constructively demonstrate how the expression for \( \Delta _{JR}\) and the identification of \(\alpha _{u}^{2}E(U^{2})\), and thus \( \beta _{o}\), in the proof of Theorem 5.1 obtain. Recall that in \(\mathcal S _{3}\)

$$\begin{aligned} E(YX^{\prime })=\beta _{o}E(XX^{\prime })+\iota _{p}[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&[ \begin{array}{ll} \alpha _{u}E(U^{2})\phi _{u}^{\prime },&0 \end{array} ] \end{array} ]. \end{aligned}$$

We have that \(\alpha _{u}E(U^{2})\phi _{u}^{\prime }=E(X_{1}X_{2}^{\prime })\). It remains to identify \(\alpha _{u}^{2}E(U^{2})\). For this, recall that the proof of Theorem 5.1 gives

$$\begin{aligned} E(YY^{\prime })&= E(YX^{\prime })E(XX^{\prime })^{-1}E(XY^{\prime })-\alpha _{u}\iota _{p}E(UX^{\prime })E(XX^{\prime })^{-1}\alpha _{u}E(XU)\iota _{p}^{\prime } \\&\quad +\iota _{p}\iota _{p}^{\prime }\alpha _{u}^{2}E(U^{2})+\alpha _{y}E(U_{y}U_{y}^{\prime })\alpha _{y}^{\prime }, \end{aligned}$$

which we rewrite as

$$\begin{aligned}&\iota _{p}\iota _{p}^{\prime }\alpha _{u}^{2}E(U^{2})-\alpha _{u}\iota _{p}E(UX^{\prime })E(XX^{\prime })^{-1}E(XU)\iota _{p}^{\prime }\alpha _{u}^{\prime }\nonumber \\&\qquad -E(\epsilon _{y.x}Y^{\prime })+\alpha _{y}E(U_{y}U_{y}^{\prime })\alpha _{y}^{\prime }=0. \end{aligned}$$
(B.1)

From the proof of Theorem 5.1, we also have

$$\begin{aligned}&\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}E(XU)\alpha _{u}^{\prime }\\&= \alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}-E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2}) \\&\quad -\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime }). \end{aligned}$$

Thus, collecting the off-diagonal terms in Eq. B.1 gives:

$$\begin{aligned}&\alpha _{u}^{2}E(U^{2})-\alpha _{u}^{4}E(U^{2})^{2}P_{x_{1}}^{-1}+E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}\alpha _{u}^{2}E(U^{2}) \\&\quad +\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })-E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })-E(\epsilon _{y_{1}.x}Y_{2}^{\prime })=0. \end{aligned}$$

This is a quadratic equation in \(\alpha _{u}^{2}E(U^{2})\) of the form

$$\begin{aligned} a\alpha _{u}^{4}E(U^{2})^{2}+b\alpha _{u}^{2}E(U^{2})+c=0, \end{aligned}$$

with

$$\begin{aligned} a&=P_{x_{1}}^{-1}, \\ b&=-[1+E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}+\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })] \\&=-[1+E(X_{1}X_{2}^{\prime })\pi _{x_{1}.x_{2}}^{\prime }P_{x_{1}}^{-1}+P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime })] \\&=-[1+2P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime })] \\&=-[1+2P_{x_{1}}^{-1}[E(X_{1}X_{1}^{\prime })-P_{x_{1}}]]=-[2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1]\text{,} \text{ and} \\ c&=E(X_{1}X_{2}^{\prime })P_{x_{2}}^{-1}E(X_{2}X_{1}^{\prime })+E(\epsilon _{y_{1}.x}Y_{2}^{\prime }), \end{aligned}$$

where we make use of \(P_{x_{1}}^{-1}\pi _{x_{1}.x_{2}}=\pi _{x_{2}.x_{1}}^{\prime }P_{x_{2}}^{-1}\) and \(P_{x_{1}}=E(X_{1}X_{1}^{\prime })-\pi _{x_{1}.x_{2}}E(X_{2}X_{1}^{\prime }).\) The discriminant of this quadratic equation gives the expression for \(\Delta _{JR}=b^{2}-4ac\). Theorem 5.1 \((ii.c)\) gives that \(\Delta _{JR}\ge 0\) and \( (iii)\) gives the two roots \(\sigma _{PC}^{\dag }\) and \(\sigma _{PC}^{*}\) of this quadratic equation

$$\begin{aligned} \frac{-b\pm \sqrt{\Delta _{JR}}}{2a}&=\frac{1}{2}P_{x_{1}} \left\{ 2P_{x_{1}}^{-1}E(X_{1}X_{1}^{\prime })-1\pm \sqrt{\Delta _{JR}} \right\} \\&=E(X_{1}X_{1}^{\prime })+\frac{1}{2}P_{x_{1}}\left(-1\pm \sqrt{\Delta _{JR}}\right), \end{aligned}$$

and shows that these are nonnegative. One of these roots identifies \(\alpha _{u}^{2}E(U^{2})\), depending on the sign of

$$\begin{aligned}&\mathrm{Var}(\alpha _{x_{1}}^{\prime }U_{x_{1}})+\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)^{\prime }[\mathrm{Var}(\phi _{u}U)\\&\quad +\mathrm{Var}(\alpha _{x_{2}}U_{x_{2}})]^{-1}\mathrm{Cov}(\phi _{u}U,\alpha _{u}U)-\mathrm{Var}(\alpha _{u}U). \end{aligned}$$

\(\beta _{o}\) is then identified from the moment \(E(YX^{\prime })=\beta _{o}E(XX^{\prime })+\iota _{p}[\alpha _{u}^{2}E(U^{2}), E(X_{1}X_{2}^{\prime })].\)

1.2 B.2 Equiconfounding in Triangular Structures: Constructive Identification

We present an argument to constructively demonstrate how the expression for \( \Delta _{PC}\) and the identification of \(\alpha _{u}^{2}E(U^{2})\) in the proof of Theorem 6.1 obtain. From the proof of Theorem 6.1, we have that

$$\begin{aligned} \beta _{o}=\{E(YX^{\prime })-\alpha _{u}E(UX^{\prime })\}E(XX^{\prime })^{-1}=\pi _{y.x}-\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}. \end{aligned}$$

Substituting for \(\beta _{o}\) in the expression for \(E(YZ^{\prime })\) gives

$$\begin{aligned} E(YZ^{\prime })&= \beta _{o}E(XZ^{\prime })+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}], \\&= \pi _{y.x}E(XZ^{\prime })-\alpha _{u}E(UX^{\prime })E(XX^{\prime })^{-1}E(XZ^{\prime })+[\begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0\end{array}],\quad \text{ or} \\&\quad -E(\epsilon _{y.x}Z^{\prime })-\alpha _{u}E(UX^{\prime })\pi _{z.x}^{\prime }+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]=0. \end{aligned}$$

From the proof of Theorem 6.1, we have

$$\begin{aligned}&-\alpha _{u}E(UX^{\prime })\pi _{z.x}^{\prime }\\&\quad =-\alpha _{u}^{2}E(U^{2})\pi _{x_{1}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{1}|x_{2}}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z.x_{1}|x_{2}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{z.x_{1}|x_{2}}^{\prime } \\&\qquad -E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z.x_{2}|x_{1}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{2}|x_{1}}^{\prime }. \end{aligned}$$

Substituting for \(-\alpha _{u}E(UX^{\prime })\pi _{z.x}^{\prime }\) in the above equality then gives

$$\begin{aligned}&-E(\epsilon _{y.x}Z^{\prime })-\alpha _{u}^{2}E(U^{2})\pi _{x_{1}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{1}|x_{2}}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z.x_{1}|x_{2}}^{\prime } \\&-\alpha _{u}^{2}E(U^{2})\pi _{z.x_{1}|x_{2}}^{\prime }-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z.x_{2}|x_{1}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.z_{1}|z_{2}}^{\prime }\pi _{z.x_{2}|x_{1}}^{\prime } \\&+[ \begin{array}{ll} \alpha _{u}^{2}E(U^{2}),&0 \end{array}]=0. \end{aligned}$$

Collecting the first elements of this vector equality gives

$$\begin{aligned}&-E(\epsilon _{y.x}Z_{1}^{\prime })-\alpha _{u}^{2}E(U^{2})\pi _{x_{1}.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+\alpha _{u}^{4}E(U^{2})^{2}P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime } \\&-\alpha _{u}^{2}E(U^{2})\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }-\alpha _{u}^{2}E(U^{2})\pi _{x_{2}.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x_{2}|x_{1}}^{\prime } \\&+\alpha _{u}^{2}E(U^{2})=0. \end{aligned}$$

This is a quadratic equation in \(\alpha _{u}^{2}E(U^{2})\) of the from

$$\begin{aligned} a\alpha _{u}^{4}E(U^{2})^{2}+b\alpha _{u}^{2}E(U^{2})+c=0, \end{aligned}$$

with

$$\begin{aligned} a&=P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }, \\ b&=-\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }-\pi _{z_{1}.x_{1}|x_{2}}^{\prime }+1, \text{ and} \\ c&=-E(\epsilon _{y.x}Z_{1}^{\prime })-E(\epsilon _{x_{1}.z}X_{2}^{\prime })\pi _{z_{1}.x_{2}|x_{1}}^{\prime }. \end{aligned}$$

The discriminant of this equation gives the expression for \(\Delta _{PC}=b^{2}-4ac\) in Theorem 6.1 where it is shown that \(\Delta _{PC}\ge 0\) and that the solutions to this quadratic equation are \(\sigma _{PC}^{\dag }\) and \(\sigma _{PC}^{*}\):

$$\begin{aligned} \frac{-b\pm \sqrt{\Delta _{PC}}}{2a}=\frac{\pi _{x.z_{1}|z_{2}}^{\prime }\pi _{z_{1}.x}^{\prime }+\pi _{z_{1}.x_{1}|x_{2}}^{\prime }-1\pm \sqrt{\Delta _{PC}}}{2P_{z_{1}}^{-1}\pi _{z_{1}.x_{1}|x_{2}}^{\prime }}. \end{aligned}$$

This then enables the identification of \((\beta _{o},\gamma _{o})\) as shown in the proof of Theorem 6.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chalak, K. (2013). Identification Without Exogeneity Under Equiconfounding in Linear Recursive Structural Systems. In: Chen, X., Swanson, N. (eds) Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1653-1_2

Download citation

Publish with us

Policies and ethics