Skip to main content

Trajectory Preprocessing

  • Chapter
  • First Online:
Computing with Spatial Trajectories

Abstract

A spatial trajectory is a sequences of (x,y) points, each with a time stamp. This chapter discusses low-level preprocessing of trajectories. First, it discusses how to reduce the size of data required to store a trajectory, in order to save storage costs and reduce redundant data. The data reduction techniques can run in a batch mode after the data is collected or in an on-line mode as the data is collected. Part of this discussion consists of methods to measure the error introduced by the data reduction techniques. The second part of the chapter discusses methods for filtering spatial trajectories to reduce measurement noise and to estimate higher level properties of a trajectory like its speed and direction. The methods include mean and median filtering, the Kalman filter, and the particle filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gelb, et al.: Applied Optimal Estimation. The MIT Press (1974)

    Google Scholar 

  2. Alvares, L., Bogorny, V., Kuijpers, B., de Macelo, J., Moelans, B., Palma, A.: Towards semantic trajectory knowledge discovery. Tech. rep., Hasselt University (2007)

    Google Scholar 

  3. Bellman, R.: On the Approximation of Curves by Line Segments Using Dynamic Programming. Communications of the ACM 4(6), 284 (1961)

    Article  Google Scholar 

  4. Bogorny, V., Valiati, J., Alvares, L.: Semantic-based Pruning of Redundant and Uninteresting Frequent Geographic Patterns. Geoinformatica 14(2), 201–220 (2010)

    Article  Google Scholar 

  5. Civilis, A., Jensen, C., Nenortaite, J., Pakalnis, S.: Efficient Tracking of Moving Objects with Precision Guarantee. In: IEEE International Conference on Mobile and Ubiquitus Systems: Networking and Services (MobiQuitous) (2004)

    Google Scholar 

  6. C.T. Lawson and S.S. Rvi and J.-H. Hwang: Compression and Mining of GPS Trace Data: New Techniques and Applications. Technical Report. Region II University Transportation Research Center

    Google Scholar 

  7. van Diggelen, F.: GNSS Accuracy: Lies, Damn Lies, and Statistics. GPS World (2007)

    Google Scholar 

  8. Doucet, A., Freitas, N., Gordon, N.: An Introduction to Sequential Monte Carlo Methods. In: Sequential Monte Carlo Methods in Practice., pp. 3–13. Springer: New York (2001)

    Google Scholar 

  9. Douglas, D., Peucker, T.: Algorithms for the Reduction of the Number of Points Required to Represent a Line or its Caricature. The Canadian Cartographer 10(2), 112–122 (1973)

    Google Scholar 

  10. Fox, D.: Adapting the Sample Size in Particle Filters Through KLD-Sampling. The International Journal of Robotics Research 22(12), 985–1003 (2003)

    Article  Google Scholar 

  11. Giannotti, F., Nanni, M., Pedreschi, D., Renso, C., Trasarti, R.: Mining Mobility Behavior from Trajectory Data. In: International Conference on Computational Science and Engineering (CSE)., pp. 948–951 (2009)

    Google Scholar 

  12. Gordon, N.: Bayesian Methods for Tracking. Imperial College, University of London, London (1994)

    Google Scholar 

  13. Guting, R., M.H.Bohlen, Erwig, M., Jensen, C., Lorentzos, N., M, S., Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects. ACM Transaction on Database Systems (TODS) 25, 1–42 (2000)

    Google Scholar 

  14. G”uting, R., Schneider, M.: Moving Object Databases. Morgan Kaufmann, San Francisco, CA (2005)

    Google Scholar 

  15. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker Line simplification Algorithm. In: International Symposium on Spatial Data Handling, pp. 134–143 (1992)

    Google Scholar 

  16. Hightower, J., Borriello, G.: Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study. In: in 6th International Conference on Ubiquitous Computing., pp. 88–106 (2004)

    Google Scholar 

  17. Hung, C.C., Peng, W.C.: Model Driven Traffic Data Acquisition in Vehicle Sensor Networks. In: International Conference of Parallen Processing (ICPP)., pp. 424–432 (2011)

    Google Scholar 

  18. Jenks, G.: Lines, Computers, and Human Frailties. Annuals of the Association of American Geographers 71, 1–10 (1981)

    Article  Google Scholar 

  19. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An On-Line Algorithm for Segmenting Time Series. In: International Conference on Data Mining (ICDM), pp. 289–296 (2001)

    Google Scholar 

  20. Keogh, E., Pazzani, M.: An Enhanced Representation of Time Series which Allows Fast and Accurate Classification, Clustering and Relevance Feedback. In: International Conference of Knowledge Discovery and Data Mining (KDD)., pp. 239–241 (1998)

    Google Scholar 

  21. Keogh, E., Pazzani, M.: An On-Line Algorithm for Segmenting Time Series. In: Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval (SIGIR). (1999)

    Google Scholar 

  22. Keogh, E., Smyth, P.: A Probabilistic Approach to Fast Pattern Matching in Time Series Databases. In: International Conference of Knowledge Discovery and Data Mining (KDD), pp. 24–30 (1997)

    Google Scholar 

  23. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley, Reading, MA (2005)

    Google Scholar 

  24. Maratnia, N., de By, R.: Spatio-Temporal Compression Techniques for Moving Point Objects. In: International Conference on Extending Database Technology (EDBT), pp. 765–782 (2004)

    Google Scholar 

  25. McMaster, R.: Statistical Analysis of Mathematical Measures of Linear Simplification. The American Cartographer 13, 103–116 (1986)

    Article  Google Scholar 

  26. Murphy, K., Russell, S.: Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. In: Sequential Monte Carlo Methods in Practice., pp. 499–515. Springer: New York (2001)

    Google Scholar 

  27. Potamias, M., Patroumpas, K., Sellis, T.: Sampling Trajectory Streams with Spatio-Temporal Criteria. In: International Conference on Scientific and Statistical Database Management (SSDBM), pp. 275–284 (2006)

    Google Scholar 

  28. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the Positions of Continuously Moving Objects. In: ACM International Conference on Management of Data (SIGMOD), pp. 331–342 (2000)

    Google Scholar 

  29. Schmid, F., Richter, K.F., Laube, P.: Semantic Trajectory Compression. In: International Symposium on Advances in Spatial and Temporal Databases (SSTD). (2009)

    Google Scholar 

  30. Vitter, J.: Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS) 11(1) (1985)

    Google Scholar 

  31. Wang, X., Tieu, K., Grimson, E.: Learning Semantic Scene Models by Trajectory Analysis. In: European Conference on Computer Vision (ECCV), pp. 110–123 (2006)

    Google Scholar 

  32. White, E.: Assessment of Line Generalization Algorithms. The American Cartographer 12, 17–27 (1985)

    Article  Google Scholar 

  33. Wolfson, O., Sistla, P., Xu, B., Zhou, J., Chamberlain, S., Yesha, Y., Rishe, N.: Tracking Moving Objects Using Database Technology in DOMINO. In: The Fourth Workshop on Next Generation Information Technologies and Systems (NGITS), pp. 112–119 (1999)

    Google Scholar 

  34. Yan, Z.: Towards Semantic Trajectory Data Analysis: A Conceptual and Computational Approach. In: Internation Conference on Very Large Data Base (VLDB) PhD Workshop. (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Chien Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, WC., Krumm, J. (2011). Trajectory Preprocessing. In: Zheng, Y., Zhou, X. (eds) Computing with Spatial Trajectories. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1629-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1629-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1628-9

  • Online ISBN: 978-1-4614-1629-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics