Skip to main content

Multilevel Modeling

  • Chapter
  • First Online:
Injury Research

Abstract

Mortality is the most frequently modeled outcome in injury research. It is easy to recognize, ­relatively free from measurement error, and fundamentally interesting. Injury researchers in public health or clinical medicine have become familiar with logistic regression as a standard way to model a binary outcome like mortality (or alternatively survival). Many other outcomes encountered in injury research can also be considered binary, such as the occurrence of a serious complication or an extended length of stay in hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewale, A. J., Hayduk, L., Estabrooks, C. A., et al. (2007). Understanding hierarchical linear models: Applications in nursing research. Nursing Research, 56, S40–6.

    Article  PubMed  Google Scholar 

  • Antretter, E., Dunkel, D., Osvath, P., et al. (2006). Multilevel modeling was a convenient alternative to common regression designs in longitudinal suicide research. Journal of Clinical Epidemiology, 59, 576–86.

    Article  PubMed  Google Scholar 

  • Austin, P. C., Tu, J. V., & Alter, D. A. (2003). Comparing hierarchical modeling with traditional logistic regression analysis among patients hospitalized with acute myocardial infarction: Should we be analyzing cardiovascular outcomes data differently? American Heart Journal, 145, 27–35.

    Article  PubMed  Google Scholar 

  • Borrell, C., Rodriguez, M., Ferrando, J., et al. (2002). Role of individual and contextual effects in injury mortality: New evidence from small area analysis. Injury Prevention, 8, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514.

    Article  Google Scholar 

  • Centre for multilevel modelling. www.bristol.ac.uk/cmm. Accessed 1 Mar 2011.

  • Champion, H. R., Copes, W. S., Sacco, W. J., et al. (1990). The Major Trauma Outcome Study: Establishing national norms for trauma care. Journal of Trauma, 30, 1356–65.

    Article  CAS  PubMed  Google Scholar 

  • Chan, C. K., Feinstein, A. R., Jekel, J. F., & Wells, C. K. (1988). The value and hazards of standardization in clinical epidemiologic research. Journal of Clinical Epidemiology, 41, 1125–34.

    Article  CAS  PubMed  Google Scholar 

  • Clark, D. E., Hannan, E. L., & Wu, C. (2010a). Predicting risk-adjusted mortality for trauma patients: Logistic versus multilevel logistic models. Journal of the American College of Surgeons, 211, 224–31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark, D. E., Hannan, E. L., & Raudenbush, S. W. (2010b). Using a hierarchical model to estimate risk-adjusted ­mortality for hospitals not included in the reference sample. Health Services Research, 45, 577–87.

    Article  PubMed  Google Scholar 

  • Clark, D. E., Lucas, F. L., & Ryan, L. M. (2007). Predicting hospital mortality, length of stay, and transfer to long-term care for injured patients. Journal of Trauma, 62, 592–600.

    Article  PubMed  Google Scholar 

  • Cohen, M. E., Dimick, J. B., Bilimoria, K. Y., et al. (2009). Risk adjustment in the American College of Surgeons National Surgical Quality Improvement Program: A comparison of logistic versus hierarchical modeling. Journal of the American College of Surgeons, 209, 687–93.

    Article  PubMed  Google Scholar 

  • Cook, T. D., & DeMets, D. L. (2008). Introduction to statistical methods for clinical trials. Boca Raton, FL: Chapman and Hall.

    Google Scholar 

  • DeLong, E. R., Peterson, E. D., DeLong, D. M., et al. (1997). Comparing risk-adjustment methods for provider ­profiling. Statistics in Medicine, 16, 2645–64.

    Article  CAS  PubMed  Google Scholar 

  • Diez-Roux, A. V. (2000). Multilevel analysis in public health research. Annual Review of Public Health, 21, 171–92.

    Article  CAS  PubMed  Google Scholar 

  • Dimick, J. B., & Welch, H. G. (2008). The zero mortality paradox in surgery. Journal of the American College of Surgeons, 206, 13–6.

    Article  PubMed  Google Scholar 

  • Flora, J. D., Jr. (1978). A method for comparing survival of burn patients to a standard survival curve. Journal of Trauma, 18, 701–5.

    Article  PubMed  Google Scholar 

  • Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Glance, L. G., Osler, T. M., Dick, A. W., et al. (2010). The survival measurement and reporting trial for trauma (SMARTT): Background and study design. Journal of Trauma, 68, 1491–7.

    Article  PubMed  Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models. London: Hodder Arnold.

    Google Scholar 

  • Goldstein, H., Browne, W., & Rasbash, J. (2002). Multilevel modelling of medical data. Statistics in Medicine, 21, 3291–315.

    Article  PubMed  Google Scholar 

  • Gorra, A. S., Clark, D. E., Mullins, R. J., & Delorenzo, M. A. (2008). Regional variation in hospital mortality and 30-day mortality for injured Medicare patients. World Journal of Surgery, 32, 954–9.

    Article  PubMed  Google Scholar 

  • Hannan, E. L., Wu, C., DeLong, E. R., & Raudenbush, S. W. (2005). Predicting risk-adjusted mortality for CABG surgery: Logistic versus hierarchical logistic models. Med Care, 43, 726–35.

    Article  PubMed  Google Scholar 

  • Hemmila, M. R., Nathens, A. B., Shafi, S., et al. (2010). The Trauma Quality Improvement Program: Pilot study and initial demonstration of feasibility. Journal of Trauma, 68, 253–62.

    Article  PubMed  Google Scholar 

  • Jones, A. P., & Jorgensen, S. H. (2003). The use of multilevel models for the prediction of road accident outcomes. Accident Analysis and Prevention, 35, 59–69.

    Article  PubMed  Google Scholar 

  • Jones, J. M., Redmond, A. D., & Templeton, J. (1995). Uses and abuses of statistical models for evaluating trauma care. Journal of Trauma, 38, 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. G., Lee, Y., Washington, S., & Choi, K. (2007). Modeling crash outcome probabilities at rural intersections: Application of hierarchical binomial logistic models. Accident Analysis and Prevention, 39, 125–34.

    Article  PubMed  Google Scholar 

  • Kirkham, J. J., & Bouamra, O. (2008). The use of statistical process control for monitoring institutional performance in trauma care. Journal of Trauma, 65, 1494–501.

    Article  PubMed  Google Scholar 

  • Krumholz, H. M., Brindis, R. G., Brush, J. E., et al. (2006). Standards for statistical models used for public reporting of health outcomes. Circulation, 113, 456–62.

    Article  PubMed  Google Scholar 

  • Lenguerrand, E., Martin, J. L., & Laumon, B. (2006). Modelling the hierarchical structure of road crash data – ­application to severity analysis. Accident Analysis and Prevention, 38, 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Lipsky, A. M., Gausche-Hill, M., Vienna, M., & Lewis, R. J. (2010). The importance of “shrinkage” in subgroup analyses. Annals of Emergency Medicine, 55(544–52), e3.

    PubMed  Google Scholar 

  • MacNab, Y. C. (2003). A Bayesian hierarchical model for accident and injury surveillance. Accident Analysis and Prevention, 35, 91–102.

    Article  PubMed  Google Scholar 

  • Milton, J. C., Shankar, V. N., & Mannering, F. L. (2008). Highway accident severities and the mixed logit model: An exploratory empirical analysis. Accident Analysis and Prevention, 40, 260–6.

    Article  PubMed  Google Scholar 

  • Moore, L., Hanley, J. A., Turgeon, A. F., et al. (2009a). A multiple imputation model for imputing missing physiologic data in the National Trauma Data Bank. Journal of the American College of Surgeons, 209, 572–9.

    Article  PubMed  Google Scholar 

  • Moore, L., Lavoie, A., Turgeon, A. F., et al. (2009b). The trauma risk adjustment model: A new model for evaluating trauma care. Annals of Surgery, 249, 1040–6.

    Article  PubMed  Google Scholar 

  • Moore, L., Hanley, J. A., Turgeon, A. F., & Lavoie, A. (2010a). Evaluating the performance of trauma centers: Hierarchical modeling should be used. Journal of Trauma, 69, 1132–7.

    Article  PubMed  Google Scholar 

  • Moore, L., Hanley, J. A., Turgeon, A. F., et al. (2010b). A new method for evaluating trauma centre outcome performance: TRAM-adjusted mortality estimates. Annals of Surgery, 251, 952–8.

    Article  PubMed  Google Scholar 

  • Mukamel, D. B., Glance, L. G., Dick, A. W., & Osler, T. M. (2010). Measuring quality for public reporting of health provider quality: Making it meaningful to patients. American Journal of Public Health, 100, 264–9.

    Article  PubMed  Google Scholar 

  • Normand, S.-L. T., Glickman, M. E., & Gatsonis, C. A. (1997). Statistical methods for profiling providers of medical care: Issues and applications. Journal of the American Statistical Association, 92, 803–14.

    Article  Google Scholar 

  • Normand, S.-L. T., & Shahian, D. M. (2007). Statistical and clinical aspects of hospital outcomes profiling. Statistical Science, 22, 206–26.

    Article  Google Scholar 

  • O’Connell, A. A., & McCoach, D. B. (2004). Applications of hierarchical linear models for evaluations of health interventions: Demystifying the methods and interpretations of multilevel models. Evaluation and The Health Professions, 27, 119–51.

    Article  PubMed  Google Scholar 

  • O’Hagan, A. (1994). Kendall’s advanced theory of statistics, volume 2B: Bayesian inference. New York: Halsted Press.

    Google Scholar 

  • Pollock, D. A. (1999). Summary of the discussion: Trauma registry data and TRISS evidence. Journal of Trauma, 47, S56–S8.

    Article  CAS  PubMed  Google Scholar 

  • Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata. College Station, TX: Stata Press.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models. London: Sage.

    Google Scholar 

  • Rothman, K. J. (1986). Modern epidemiology. Boston: Little, Brown and Co.

    Google Scholar 

  • Shahian, D. M., Normand, S.-L. T., Torchiana, D. F., et al. (2001). Cardiac surgery report cards: Comprehensive review and statistical critique. The Annals of Thoracic Surgery, 72, 2155–68.

    Article  CAS  PubMed  Google Scholar 

  • Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis. London: Sage.

    Google Scholar 

  • Spiegelhalter, D. J. (2005). Funnel plots for comparing institutional performance. Statistics in Medicine, 24, 1185–202.

    Article  PubMed  Google Scholar 

  • The BUGS project. www.mrc-bsu.cam.ac.uk/bugs Accessed 1 Mar 2011.

  • Ulm, K. (1990). A simple method to calculate the confidence interval of a standardized mortality ratio (SMR). American Journal of Epidemiology, 131, 373–5.

    CAS  PubMed  Google Scholar 

  • Yannis, G., Papadimitriou, E., & Antoniou, C. (2007). Multilevel modelling for the regional effect of enforcement on road accidents. Accident Analysis and Prevention, 39, 818–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by Grant R21HD061318 (PI Clark) from the National Institutes of Health, Grants R01HS015656 (PI Clark) and R01HS017718 (PI Shafi) from the Agency for Healthcare Research and Quality, a grant from the Maine Medical Center Research Strategic Plan (PI Clark), and a research award from the Canadian Institutes of Health Research (PI Moore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clark MD .

Editor information

Editors and Affiliations

Additional information

Disclaimers

Content reproduced from the National Trauma Data Bank remains the full and exclusive copyrighted property of the American College of Surgeons. The American College of Surgeons is not responsible for any claims arising from works based on the original data, text, tables, or figures.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clark, D.E., Moore, L. (2012). Multilevel Modeling. In: Li, G., Baker, S. (eds) Injury Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1599-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1599-2_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1598-5

  • Online ISBN: 978-1-4614-1599-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics