Skip to main content

Enzyme-assisted food processing

  • Chapter
  • First Online:
Book cover Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Enzymes, as biological catalysts, have been used extensively as processing aids in the food industry for the past several decades. They help to achieve desired attributes such as texture, color, flavor, and other important qualities of food materials, thus enabling raw materials and ingredients to be transformed into finished products. Compared with most traditional methods, utilization of enzymes in food processing provides a greener food chemistry approach as enzymes are natural proteins and have very high selectivity and specificity. The chapter provides detailed information on enzymatic modifications of foodstuffs and is structured in four main parts to answer the following questions (1) What are the major sources of enzymes? (2) What are their key properties? (3) How are they used in food processing? and (4) How can they be controlled when used in the development of food products and ingredients? The mode of action of the major enzyme groups (i.e., oxidoreductases, transferases, proteases, carbohydrases, lipases, and isomerases) is discussed in detail. In addition, for each group, examples are given of particular uses of the enzymes in the food and feed industries. The impact of different conditions, that is, temperature, pH, and inhibitors, as well as water activity on enzymatic activity of the different enzymes, is further provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-el-Al, A.T., and H.J. Phaff. 1968. Exo-beta-glucanases in yeast. The Biochemical Journal 109(3): 347–360.

    CAS  Google Scholar 

  • Adigüzel, A.C., B.O. Bitlisli, I. Yaşa, and N.T. Eriksen. 2009. Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. Journal of Applied Microbiology 107(1): 226–234.

    Article  CAS  Google Scholar 

  • Ashie, I.N.A., and B.K. Simpson. 1995. Effects of hydrostatic pressure on alpha 2-macroglobulin and selected proteases. Journal of Food Biochemistry 18: 377–391.

    Article  CAS  Google Scholar 

  • Ashie, I.N.A., B.K. Simpson, and H.S. Ramaswamy. 1996. Control of endogenous enzyme activity in fish muscle by inhibitors and hydrostatic pressure using rsm. Journal of Food Science 61(2): 350–356.

    Article  CAS  Google Scholar 

  • Bachman, E.S., and D.R. McClay. 1996. Molecular cloning of the first metazoan beta-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proceedings of the National Academy of Science of the United States of America 93: 6808–6813.

    Article  CAS  Google Scholar 

  • Beschin, A., M. Bilej, F. Hanssens, J. Raymakers, E. Van Dyck, H. Revets, L. Brys, J. Gomez, P. De Baetselier, and M. Timmermans. 1998. Identification and cloning of a glucan- and lipopolysaccharide-binding protein from eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. The Journal of Biological Chemistry 273(38): 24948–24954.

    Article  CAS  Google Scholar 

  • Bills, D.D., and E.A. Day. 1964. Determination of the major free fatty acids of cheddar cheese. Journal of Dairy Science 47: 733–738.

    Article  CAS  Google Scholar 

  • Bogs, J., and K. Geider. 2000. Molecular analysis of sucrose metabolism of erwinia amylovora and influence on bacterial virulence. Journal of Bacteriology 182(19): 5351–5358.

    Article  CAS  Google Scholar 

  • Bonilha, P.R.M., V. Menocci, A.J. Goulart, M.L.T.M. Polizeli, and R. Monti. 2006. Cyclodextrin glycosyltransferase from Bacillus licheniformis: Optimization of production and its properties. Brazilian Journal of Microbiology 37(3): 317–323.

    Article  CAS  Google Scholar 

  • Burgess, K., and M. Shaw. 1983. Dairy. In Industrial enzymology: The application of enzymes in industry, ed. T. Godfrey and J. Reichelt. New York: The Nature Press.

    Google Scholar 

  • Chaplin, M.F., and C. Bucke. 1990. Enzyme preparation and use. In Enzyme technology, ed. M.F. Chaplin and C. Bucke. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Cheetham, P.S.J., A.J. Hacking, and M. Vlitos. 1989. Synthesis of novel disaccharides by a newly isolated fructosyl transferase from Bacillus subtilis. Enzyme and Microbial Technology 11(4): 212–219.

    Article  CAS  Google Scholar 

  • Cheftel, J.C. 1992. Effects of high hydrostatic pressure on food constitutes: An overview. In High pressure and biotechnology, ed. C. Balny, R. Hayashi, K. Heremans, and P. Masson, 195–209. London: Colloque INSERM/Libby Eurotech Ltd.

    Google Scholar 

  • Coleman, G.S. 1985. The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. The Journal of Agricultural Science 104: 349–360.

    Article  CAS  Google Scholar 

  • Cooper, R.A., and R.N. Greenshields. 1961. Sucrases in phaseolus vulgaris. Nature 191(4788): 601–602.

    Article  CAS  Google Scholar 

  • Cooper, R.A., and R.N. Greenshields. 1964. The partial purification and some properties of two sucrases of phaseolus vulgaris. The Biochemical Journal 92(2): 357–364.

    CAS  Google Scholar 

  • Couto, M.A., S.S.L. Harwig, and R.I. Lehrer. 1993. Selective inhibition of microbial serine proteases by enap-2, an antimicrobial peptide from equine neutrophils. Infection and Immunity 61(7): 2991–2994.

    CAS  Google Scholar 

  • Cowan, D. 1983. Proteins. In Industrial enzymology: The application of enzymes in industry, ed. T. Godfrey and J. Reichelt. New York: The Nature Press.

    Google Scholar 

  • Dalev, P.G. 1994. Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresource Technology 48(3): 265–267.

    Article  CAS  Google Scholar 

  • Dalev, P.G., and L.S. Simeonova. 1992. An enzyme biotechnology for the total utilization of leather wastes. Biotechnology Letters 14(6): 531–534.

    Article  CAS  Google Scholar 

  • De La Motte, R.S., and F.W. Wagner. 1987. Aspergillus niger sulfhydryl oxidase. Biochemistry 26(23): 7363–7371.

    Article  Google Scholar 

  • Dinges, J.R., C. Colleoni, M.G. James, and A.M. Myers. 2003. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. The Plant Cell 15(3): 666–680.

    Article  CAS  Google Scholar 

  • Do Nascimento, W.C.A., and M.L. Leal Martins. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian Journal of Microbiology 35(1–2): 91–96.

    Article  Google Scholar 

  • Elliott, K.J., W.O. Butler, C.D. Dickinson, Y. Konno, T.S. Vedvick, L. Fitzmaurice, and T.E. Mirkov. 1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Molecular Biology 21(3): 515–524.

    Article  CAS  Google Scholar 

  • Elortza, F., T.S. Nühse, L.J. Foster, A. Stensballe, S.C. Peck, and O.N. Jensen. 2003. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Molecular and Cellular Proteomics 2(12): 1261–1270.

    Article  CAS  Google Scholar 

  • Ferrarese, L., L. Trainotti, P. Moretto, P.P. De Laureto, N. Rascio, and G. Casadoro. 1995. Differential ethylene-inducible expression of cellulase in pepper plants. Plant Molecular Biology 29(4): 735–747.

    Article  CAS  Google Scholar 

  • Gildberg, A., B.K. Simpson, and N.F. Haard. 2000. Uses of enzymes from marine organisms. In Seafood enzymes: Utilization and influence on postharvest seafood quality, ed. N.F. Haard and B.K. Simpson. New York: Marcel Dekker.

    Google Scholar 

  • Goda, S.K., O. Eissa, M. Akhtar, and N.P. Minton. 1997. Molecular analysis of a Clostridium butyricum ncimb 7423 gene encoding 4-α-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli. Microbiology 143(10): 3287–3294.

    Article  CAS  Google Scholar 

  • Godfrey, T., and S. West. 1996. Introduction to industrial enzymology. In Industrial enzymology, ed. T. Godfrey and S. West. Cambridge: Cambridge University Press.

    Google Scholar 

  • González-Teuber, M., M.J. Pozo, A. Muck, A. Svatos, R.M. Adame-Álvarez, and M. Heil. 2010. Glucanases and chitinases as causal agents in the protection of acacia extrafloral nectar from infestation by phytopathogens. Plant Physiology 152(3): 1705–1715.

    Article  CAS  Google Scholar 

  • Gupta, A.K., and I.S. Bhatia. 1980. Glucofructosan biosynthesis in fusarium oxysporum. Phytochemistry 19(12): 2557–2563.

    Article  CAS  Google Scholar 

  • Gupta, A.K., and I.S. Bhatia. 1982. Glucofructosan biosynthesis in fusarium oxysporum: Regulation and substrate specificity of fructosyl transferase and invertase. Phytochemistry 21(6): 1249–1253.

    Article  CAS  Google Scholar 

  • Guzmán, F., S. Barberis, and A. Illanes. 2007. Peptide synthesis: Chemical or enzymatic. Electronic Journal of Biotechnology 10(2): 279–314.

    Article  CAS  Google Scholar 

  • Ha, J.K., and R.C. Lindsay. 1993. Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. Journal of Dairy Science 76(3): 677–690.

    Article  CAS  Google Scholar 

  • Haard, N.F., and B.K. Simpson. 1994. Proteases from aquatic organisms and their uses in the seafood industry. In Fisheries processing: Biotechnological applications, ed. A.M. Martin. London: Chapman and Hall.

    Google Scholar 

  • Heilskov, N.S.C. 1951. Studies on animal lactase. Acta Physiologica Scandinavica 24: 84–89.

    Article  CAS  Google Scholar 

  • Homann, A., and J. Seibel. 2009. Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering. Applied Microbiology and Biotechnology 83(2): 209–216.

    Article  CAS  Google Scholar 

  • Hoober, K.L., S.L. Sheasley, H.F. Gilbert, and C. Thorpe. 1999. Sulfhydryl oxidase from egg white: A facile catalyst for disulfide bond formation in proteins and peptides. The Journal of Biological Chemistry 274(32): 22147–22150.

    Article  CAS  Google Scholar 

  • Hou, C.T. 2002. Industrial uses of lipase. In Lipid biotechnology, ed. T.M. Kuo and H.W. Gardner. New York: Marcel Dekker.

    Google Scholar 

  • Hrassnigg, N., and K. Crailsheim. 2005. Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36(2): 255–277.

    Article  Google Scholar 

  • Kalisz, H.M. 1988. Microbial proteinases. Advances in Biochemical Engineering/Biotechnology 36: 1–65.

    Article  CAS  Google Scholar 

  • Kaneda, M., and N. Tominaga. 1975. Isolation and characterization of a proteinase from the sarcocarp of melon fruit. Journal of Biochemistry 78(6): 1287–1296.

    CAS  Google Scholar 

  • Katsaros, G.I., M. Tsevdou, T. Panagiotou, and P.S. Taoukis. 2010. Kinetic study of high pressure microbial and enzyme inactivation and selection of pasteurisation conditions for Valencia orange juice. International Journal of Food Science and Technology 45(6): 1119–1129.

    Article  CAS  Google Scholar 

  • Kaufman, S.P., and O. Fennema. 1987. Evaluation of sulfhydryl oxidase as a strengthening agent for wheat flour dough. Cereal Chemistry 64: 172–176.

    CAS  Google Scholar 

  • Kikuchi, T., H. Shibuya, and J.T. Jones. 2005. Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. The Biochemical Journal 389(1): 117–125.

    Article  CAS  Google Scholar 

  • Kim, S.M., and E.J. Kim. 2009. Development of chicken breast noodles adding rubus coreanum miquel and opuntia ficus-indica var. Saboten. Journal of the Korean Society of Food Science and Nutrition 38(8): 1111–1117.

    Article  CAS  Google Scholar 

  • Kobayashi, M., and S. Shimizu. 1999. Cobalt proteins. European Journal of Biochemistry 261(1): 1–9.

    Article  CAS  Google Scholar 

  • Kozhemyako, V.B., D.V. Rebrikov, S.A. Lukyanov, E.A. Bogdanova, A. Marin, A.K. Mazur, S.N. Kovalchuk, E.V. Agafonova, V.V. Sova, L.A. Elyakova, and V.A. Rasskazov. 2004. Molecular cloning and characterization of an endo-1,3-β-d-glucanase from the mollusk spisula sachalinensis. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 137(2): 169–178.

    Article  CAS  Google Scholar 

  • Layman, P.L. 1986. Industrial enzymes battling to remain specialties. Chemical and Engineering News 64(37): 11–14.

    Article  Google Scholar 

  • Lee, K.J., J.D. Choi, and J.Y. Lim. 1992. Purification and properties of intracellular fructosyl transferase from aureobasidium pullulans. World Journal of Microbiology and Biotechnology 8(4): 411–415.

    Article  CAS  Google Scholar 

  • Leubner-Metzger, G. 2003. Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Science Research 13(1): 17–34.

    Article  CAS  Google Scholar 

  • Li, D., P. Adhikari, J.A. Shin, J.H. Lee, Y.J. Kim, X.M. Zhu, J.N. Hu, J. Jin, C.C. Akoh, and K.T. Lee. 2010. Lipase-catalyzed interesterification of high oleic sunflower oil and fully hydrogenated soybean oil comparison of batch and continuous reactor for production of zero trans shortening fats. LWT-Food Science and Technology 43(3): 458–464.

    Article  CAS  Google Scholar 

  • Lim, D., and W.F. Shipe. 1972. Proposed mechanism for the antioxygenic action of trypsin in milk. Journal of Dairy Science 55: 753–758.

    Article  CAS  Google Scholar 

  • Liu, B., Y. Lu, Z. Xin, and Z. Zhang. 2009. Identification and antifungal assay of a wheat β-1,3-glucanase. Biotechnology Letters 31(7): 1005–1010.

    Article  CAS  Google Scholar 

  • Loncin, N., J.J. Bimbenet, and J. Lenges. 1968. Influence of water activity on the spoilage of foodstuffs. International Journal of Food Science and Technology 3: 131–142.

    Google Scholar 

  • Lopez-Amaya, C., and A.G. Marangoni. 2000a. Lipases. In Seafood enzymes: Utilization and influence on postharvest seafood quality, ed. N.F. Haard and B.K. Simpson. New York: Marcel Dekker.

    Google Scholar 

  • Lopez-Amaya, C., and A.G. Marangoni. 2000b. Phospholipases. In Seafood enzymes: Utilization and influence on postharvest seafood quality, ed. N.F. Haard and B.K. Simpson. New York: Marcel Dekker.

    Google Scholar 

  • Lund, L.R., J. Rømer, T.H. Bugge, B.S. Nielsen, T.L. Frandsen, J.L. Degen, R.W. Stephens, and K. Danø. 1999. Functional overlap between two classes of matrix-degrading proteases in wound healing. The EMBO Journal 18(17): 4645–4656.

    Article  CAS  Google Scholar 

  • Mathewson, P.R. 1998. Enzymes: Practical guides for the food industry. In Enzymes, Handbook series. American chemical society, ed. P.R. Mathewson. St. Paul: Eagan Press.

    Google Scholar 

  • McWethy, S.J., and P.A. Hartman. 1979. Extracellular maltase of Bacillus brevis. Applied and Environmental Microbiology 37(6): 1096–1102.

    CAS  Google Scholar 

  • Menocci, V., A.J. Goulart, P.R. Adalberto, O.L. Tavano, D.P. Marques, J. Contiero, and R. Monti. 2008. Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from Brazilian soil. Brazilian Journal of Microbiology 39(4): 682–688.

    Article  Google Scholar 

  • Mistry, V.V. 2006. Chymosin in cheese making. In Food biochemistry and food processing, ed. Y.H. Hui, W.K. Nip, L.M.L. Nollet, G. Paliyath, and B.K. Simpson. Ames: Blackwell Publishing.

    Google Scholar 

  • Mochizuki, K., K. Isobe, and Y. Sawada. 1971. Method for producing candied fruit. US 3,615,687.

    Google Scholar 

  • Mojovic, L., S. Siler-Marinkovic, G. Kukic, and G. Vunjak-Novakovic. 1993. Rhizopus arrhizus lipase-catalyzed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme and Microbial Technology 15(5): 438–443.

    Article  CAS  Google Scholar 

  • Moore, M.M., T.J. Schober, P. Dockery, and E.K. Arendt. 2004. Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chemistry 81(5): 567–575.

    Article  CAS  Google Scholar 

  • Moore, M.M., M. Heinbockel, P. Dockery, H.M. Ulmer, and E.K. Arendt. 2006. Network formation in gluten-free bread with application of transglutaminase. Cereal Chemistry 83(1): 28–36.

    Article  CAS  Google Scholar 

  • Morikawa, M., Y. Izawa, N. Rashid, T. Hoaki, and T. Imanaka. 1994. Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Applied and Environmental Microbiology 60(12): 4559–4566.

    CAS  Google Scholar 

  • Motoki, M., and K. Seguro. 1998. Transglutaminase and its use for food processing. Trends in Food Science and Technology 9(5): 204–210.

    Article  CAS  Google Scholar 

  • Mukherjee, K.D., and H.J. Hills. 1994. Lipases from plants. In Lipases: Their structure, biochemistry and application, ed. P. Wooley and S.B. Petersen. Cambridge: Cambridge University Press.

    Google Scholar 

  • Muñoz-Gutiérrez, I., M.E. Rodríguez-Alegría, and A. López Munguía. 2009. Kinetic behaviour and specificity of β-fructosidases in the hydrolysis of plant and microbial fructans. Process Biochemistry 44(8): 891–898.

    Article  CAS  Google Scholar 

  • Murakami, Y., T. Yoshida, and A. Hirata. 1998. Enzymatic synthesis of n-formyl-l-aspartyl-l-phenylalanine methyl ester (aspartame precursor) utilizing an extractive reaction in aqueous/organic biphasic medium. Biotechnology Letters 20(8): 767–769.

    Article  CAS  Google Scholar 

  • Mustranta, A., E. Karvonen, H. Ojamo, and M. Linko. 1981. Production of mold lactase. Biotechnology Letters 3(7): 333–338.

    Article  CAS  Google Scholar 

  • Nair, S.U., R.S. Singhal, and M.Y. Kamat. 2006. Enhanced production of thermostable pullulanase type 1 using bacillus cereus fdta 13 and its mutant. Food Technology and Biotechnology 44(2): 275–282.

    CAS  Google Scholar 

  • Novo Nordisk. 1993. Annual report novo nordisk a/s. Denmark: Bagsaverd.

    Google Scholar 

  • Oku, T., T. Tokunaga, and N. Hosoya. 1984. Nondigestibility of a new sweetener, ‘neosugar’, in the rat. The Journal of Nutrition 114(9): 1574–1581.

    CAS  Google Scholar 

  • Olempska-Beer, Z.S., R.I. Merker, M.D. Ditto, and M.J. DiNovi. 2006. Food-processing enzymes from recombinant microorganisms: A review. Regulatory Toxicology and Pharmacology 45(2): 144–158.

    Article  CAS  Google Scholar 

  • Owusu-Yaw, J., M.R. Marshall, J.A. Koburger, and C.I. Wei. 1988. Low ph inactivation of pectinesterase in single-strength orange juice. Journal of Food Science 53(2): 504–507.

    Article  CAS  Google Scholar 

  • Prapulla, S.G., V. Subhaprada, and N.G. Karanth. 2000. Microbial production of oligosaccharides: A review. In Advances in applied microbiology, ed. S.L. Neidleman, A.I. Laskin, J.W. Bennet, and G. Gadd. New York: Academic.

    Google Scholar 

  • Pugsley, A.P., C. Chapon, and M. Schwartz. 1986. Extracellular pullulanase of klebsiella pneumoniae is a lipoprotein. Journal of Bacteriology 166(3): 1083–1088.

    CAS  Google Scholar 

  • Quiroz-Castañeda, R.E., E. Balcázar-López, E. Dantán-González, A. Martinez, J. Folch-Mallol, and C. Martínez-Anaya. 2009. Characterization of cellulolytic activities of bjerkandera adusta and pycnoporus sanguineus on solid wheat straw medium. Electronic Journal of Biotechnology 12(4): 15.

    Google Scholar 

  • Raksakulthai, N., and N.F. Haard. 1992. Correlation between the concentration of peptides and amino acids and the flavour of fish sauce. ASEAN Food Journal 7: 86–90.

    CAS  Google Scholar 

  • Ramana Rao, M.V., and S.M. Dutta. 1978. Lactase activity of microorganisms. Folia Microbiologica 23(3): 210–215.

    Article  Google Scholar 

  • Robert, J.H., and B. Darbyshire. 1980. Fructan synthesis in onion. Phytochemistry 19: 1017–1020.

    Article  Google Scholar 

  • Rudenskaya, G.N., A.M. Bogacheva, A. Preusser, A.V. Kuznetsova, Y.E. Dunaevsky, B.N. Golovkin, and V.M. Stepanov. 1995. Macluralisin: A serine proteinase from fruits of maclura pomifera (raf.) schneid. Planta 196(1): 174–179.

    Article  CAS  Google Scholar 

  • Sareevoravitkul, R., B.K. Simpson, and H.S. Ramaswamy. 1996. Comparative properties of bluefish (pomatomus saltatrix) gels formulated by high hydrostatic pressure and heat. Journal of Aquatic Food Product Technology 5(3): 65–79.

    Article  Google Scholar 

  • Schmid, R.D., and R. Verger. 1998. Lipases: Interfacial enzymes with attractive applications. Angewandte Chemie 37(12): 1609–1633.

    CAS  Google Scholar 

  • Shahidi, F., and X.Q. Han. 1993. Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition 33(6): 501–547.

    Article  CAS  Google Scholar 

  • Shiomi, N., J. Yamada, and M. Izawa. 1979. Synthesis of several fructo-oligosaccharides by asparagus fructosyl transferases. Agricultural and Biological Chemistry 43: 2233–2244.

    Article  CAS  Google Scholar 

  • Sidhu, M.S., M.K. KalRa, and D.K. Sandhu. 1986. Purification and characterization of cellulolytic enzymes from trichoderma harzianum. Folia Microbiologica 31(4): 293–302.

    Article  CAS  Google Scholar 

  • Simpson, B.K., and N.F. Haard. 1984. Trypsin from Greenland cod as a food-processing aid. Journal of Applied Biochemistry 6: 135–143.

    CAS  Google Scholar 

  • Sliwkowski, M.X., H.E. Swaisgood, D.A. Clare, and H.R. Horton. 1984. Kinetic mechanism and specificity of bovine milk sulphydryl oxidase. The Biochemical Journal 220(1): 51–55.

    CAS  Google Scholar 

  • Sritunyalucksana, K., S.Y. Lee, and K. Söderhäll. 2002. A β-1,3-glucan binding protein from the black tiger shrimp, penaeus monodon. Developmental and Comparative Immunology 26(3): 237–245.

    Article  CAS  Google Scholar 

  • Sträter, N., I. Przylas, W. Saenger, Y. Terada, K. Fujii, and T. Takaha. 2002. Structural basis of the synthesis of large cycloamyloses by amylomaltase. Biologia: Section Cell and Molecular Biology 57(Suppl. 11): 93–99.

    Google Scholar 

  • Tafazoli, S., A.W. Wong, T. Akiyama, H. Kajiura, E. Tomioka, I. Kojima, H. Takata, and T. Kuriki. 2010. Safety evaluation of amylomaltase from thermus aquaticus. Regulatory Toxicology and Pharmacology 57(1): 62–69.

    Article  CAS  Google Scholar 

  • Takaha, T., M. Yanase, H. Takata, S. Okada, and S.M. Smith. 1996. Potato d-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. The Journal of Biological Chemistry 271(6): 2902–2908.

    Article  CAS  Google Scholar 

  • Tejada, L., M. Vioque, R. Gómez, and J. Fernández-Salguero. 2008. Effect of lyophilisation, refrigerated storage and frozen storage on the coagulant activity and microbiological quality of cynara cardunculus l. Extracts. Journal of the Science of Food and Agriculture 88(8): 1301–1306.

    Article  CAS  Google Scholar 

  • Terada, Y., M. Yanase, H. Takata, T. Takaha, and S. Okada. 1997. Cyclodextrins are not the major cyclic α-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. The Journal of Biological Chemistry 272(25): 15729–15733.

    Article  CAS  Google Scholar 

  • Thakur, B.R., and P.E. Nelson. 1997. Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation. Nahrung Food 41(5): 299–301.

    Article  CAS  Google Scholar 

  • Thomas, B.R., M. Inouhe, C.R. Simmons, and D.J. Nevins. 2000. Endo-1,3;1,4-β-glucanase from coleoptiles of rice and maize: Role in the regulation of plant growth. International Journal of Biological Macromolecules 27(2): 145–149.

    Article  CAS  Google Scholar 

  • Thorpe, C., K.L. Hoober, S. Raje, N.M. Glynn, J. Burnside, G.K. Turi, and D.L. Coppock. 2002. Sulfhydryl oxidases: Emerging catalysts of protein disulfide bond formation in eukaryotes. Archives of Biochemistry and Biophysics 405(1): 1–12.

    Article  CAS  Google Scholar 

  • Tucker, M.L., R. Sexton, E. del Campillo, and L.N. Lewis. 1988. Bean abscission cellulase. Plant Physiology 88: 1257–1262.

    Article  CAS  Google Scholar 

  • Watanabe, H., and G. Tokuda. 2001. Animal cellulases. Cellular and Molecular Life Sciences 58(9): 1167–1178.

    Article  CAS  Google Scholar 

  • Weerasinghe, V.C., M.T. Morrissey, and H. An. 1996. Characterization of active components in food-grade proteinase inhibitors for surimi manufacture. Journal of Agricultural and Food Chemistry 44(9): 2584–2590.

    Article  CAS  Google Scholar 

  • Wells, G.H. 1966. Tenderness of freeze-dried chicken with emphasis on enzyme treatments. East Lansing: Michigan State University.

    Google Scholar 

  • Wenham, D.G., T.D. Hennessey, and J.A. Cole. 1979. Regulation of glucosyl- and fructosyltransferase synthesis by continuous cultures of streptococcus mutans. Journal of General Microbiology 114(1): 117–124.

    CAS  Google Scholar 

  • Whitaker, J.R. 1994. The sulfhydryl proteases. In Principles of enzymology for the food sciences, 2nd ed, ed. J.R. Whitaker. New York: CRC Press/Marcel Dekker.

    Google Scholar 

  • Wilkinson, M.G., and K.N. Kilcawley. 2005. Mechanisms of incorporation and release of enzymes into cheese during ripening. International Dairy Journal 15(6–9): 817–830.

    Article  CAS  Google Scholar 

  • Yamada, H. 1989. Localization in skin, activation and reaction mechanisms of skin sulfhydryl oxidase. The Japanese Journal of Dermatology 99(8): 861–869.

    CAS  Google Scholar 

  • Yamasaki, Y., S. Nakashima, and H. Konno. 2008. Pullulanase from rice endosperm. Acta Biochimica Polonica 55(3): 507–510.

    CAS  Google Scholar 

  • Yoshio, N., I. Maeda, H. Taniguchi, and M. Nakamura. 1986. Purification and properties of d-enzyme from malted barley. Journal of the Japanese Society of Starch Science 33: 244–252.

    Article  CAS  Google Scholar 

  • Yun, J.-W., S.-C. Kang, and S.-K. Song. 1995. Continuous production of fructooligosaccharides from sucrose by immobilized fructosyltransferase. Biotechnology Techniques 9(11): 805–808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Simpson, B.K., Rui, X., XiuJie, J. (2012). Enzyme-assisted food processing. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_13

Download citation

Publish with us

Policies and ethics