Skip to main content

Electrodialysis in food processing

  • Chapter
  • First Online:
Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Electrodialysis is a membrane technology that is used increasingly in the food sector to concentrate, purify, or modify the properties of foods. Electrodialysis can be performed in a dilution-concentration mode (conventional electrodialysis) when anion exchange and cation exchange membranes are used, or for pH modification when bipolar membranes are used (electrodialysis with bipolar membranes). Advantages of the technology include a modular design, product purification with no dilution, efficiency, pH variation and adjustment with no addition of external solutions, and the lack of requirements for additional thermal treatment. Today, the most important use of conventional electrodialysis is the desalination of brackish water for the production of potable water. However, other applications are gaining increasing importance including large-scale industrial installations in the food industry, whey and molasses demineralization, tartaric stabilization of wine, and deacidification of fruit juices). Electrodialysis using bipolar membranes is also used at the industrial scale to produce organic acid. Other applications currently under development that have potential for future industrial applications include the production of plant protein isolates, production of acid caseinates, fractionation of whey proteins, regeneration of wastewater resulting from food processing, and separation of peptides using an ultrafiltration–electrodialysis integrated process. The chapter summarizes some of the key industrial scale applications of both electrotechnologies in the food sector. Furthermore a few selected applications under development are briefly presented, with emphasis on the applications having the most potential to help in environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary, S.K., W.P. Harkare, K.P. Govindan, and A.M. Nanjundaswamy. 1983. Deacidification of fruit juices by electrodialysis. Indian Journal of Technology 21: 120–123.

    CAS  Google Scholar 

  • Aider, M., D. de Halleux, and L. Bazinet. 2008a. Potential of continuous electrophoresis without and with porous membranes (CEPM) in the bio-food industry: Review. Journal of Membrane Science 19: 351–362.

    CAS  Google Scholar 

  • Aider, M., S. Brunet, and L. Bazinet. 2008b. Electroseparation of chitosan oligomers by electrodialysis with ultrafiltration membrane (EDUF) and impact on electrodialytic parameters. Journal of Membrane Science 309: 222–232.

    Article  CAS  Google Scholar 

  • Aider, M., S. Brunet, and L. Bazinet. 2008c. Effect of pH and cell configuration on the selective and specific electrodialytic separation of chitosan oligomers. Separation and Purification Technology 63: 612–619.

    Article  CAS  Google Scholar 

  • Aider, M., S. Brunet, and L. Bazinet. 2009. Effect of solution flow velocity and electric field strength on chitosan oligomer electromigration kinetics and their separation in an electrodialysis with ultrafiltration membrane (EDUF) system. Separation and Purification Technology 69: 63–70.

    Article  CAS  Google Scholar 

  • Ali, F., D. Ippersiel, F. Lamarche, and M. Mondor. 2010. Characterization of low-phytate soy protein isolates produced by membrane technologies. Innovative Food Science and Emerging Technologies 11: 162–168.

    Article  CAS  Google Scholar 

  • Alibhai, Z., M. Mondor, C. Moresoli, D. Ippersiel, and F. Lamarche. 2006. Production of soy protein concentrates/isolates: Traditional and membrane technologies. Desalination 191: 351–358.

    Article  CAS  Google Scholar 

  • Ayala-Bribiesca, E., M. Araya-Farias, G. Pourcelly, and L. Bazinet. 2006. Effect of concentrate solution pH and mineral composition of a whey protein diluate solution on membrane fouling during conventional electrodialysis. Journal of Membrane Science 280: 790–801.

    Article  CAS  Google Scholar 

  • Bailly, M. 2002. Production of organic acids by bipolar electrodialysis: Realizations and perspectives. Desalination 144: 157–162.

    Article  CAS  Google Scholar 

  • Bazinet, L., M. Boulet, D. Ippersiel, R. Labrecque, F. Lamarche, and R. Toupin. 1996. Systematic study on the preparation of a food grade soyabean protein. Report for the Canadian Electricity Association n 9326 U 987, Research and Development, Montreal.

    Google Scholar 

  • Bazinet, L., F. Lamarche, R. Labrecque, and D. Ippersiel. 1997a. Effect of KCl and soy protein concentrations on the performance of bipolar membrane electro-acidification. Journal of Agricultural and Food Chemistry 45: 2419–2425.

    Article  CAS  Google Scholar 

  • Bazinet, L., F. Lamarche, R. Labrecque, and D. Ippersiel. 1997b. Effect of number of bipolar membranes and temperature on the performance of bipolar membrane electroacidification. Journal of Agricultural and Food Chemistry 45: 3788–3794.

    Article  CAS  Google Scholar 

  • Bazinet, L., F. Lamarche, and D. Ippersiel. 1998a. Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry. Trends in Food Science and Technology 9: 107–113.

    Article  CAS  Google Scholar 

  • Bazinet, L., F. Lamarche, and D. Ippersiel. 1998b. Comparison of chemical and bipolar membrane electrochemical acidification for precipitation of soybean proteins. Journal of Agricultural and Food Chemistry 46: 2013–2019.

    Article  CAS  Google Scholar 

  • Bazinet, L., F. Lamarche, D. Ippersiel, and J. Amiot. 1999a. Bipolar membrane electro-acidification to produce bovine milk casein isolate. Journal of Agricultural and Food Chemistry 47: 5291–5296.

    Article  CAS  Google Scholar 

  • Bazinet, L., D. Ippersiel, and F. Lamarche. 1999b. Recovery of magnesium and protein from soy tofu whey by electrodialytic configurations. Journal of Chemical Technology and Biotechnology 74: 663–668.

    Article  CAS  Google Scholar 

  • Bazinet, L., D. Ippersiel, C. Gendron, J. Beaudry, M. Mahdavi, J. Amiot, and F. Lamarche. 2000a. Cationic balance in skim milk during bipolar membrane electroacidification. Journal of Membrane Science 173: 201–209.

    Article  CAS  Google Scholar 

  • Bazinet, L., D. Ippersiel, R. Labrecque, and F. Lamarche. 2000b. Effect of temperature on the separation of soybean 11S and 7S protein fractions during bipolar membrane electroacidification. Biotechnology Progress 16: 292–295.

    Article  CAS  Google Scholar 

  • Bazinet, L., D. Ippersiel, and B. Mahdavi. 2004a. Fractionation of whey protein by bipolar membrane electroacidification. Innovative Food Science and Emerging Technologies 5: 17–25.

    Article  CAS  Google Scholar 

  • Bazinet, L., D. Ippersiel, and B. Mahdavi. 2004b. Effect of conductivity control on the separation of whey protein by bipolar membrane electroacidification. Journal of Agricultural and Food Chemistry 52: 1980–1984.

    Article  CAS  Google Scholar 

  • Bazinet, L., Y. DeGrandprĂ©, and A. Porter. 2005. Electromigration of tobacco polyphenols. Separation and Purification Technology 41: 101–107.

    Article  CAS  Google Scholar 

  • Benafi-Bako, K., N. Nemestothy, and L. Gubicza. 2004. A study on applications of membrane techniques in bioconversion of fumaric acid to l-malic acid. Desalination 162: 301–306.

    Article  Google Scholar 

  • Boergardts, P., W. Krischke, and W. Troesch. 1998. Process for purifying dairy wastewater. US Patent 5,746, 920.

    Google Scholar 

  • Boyaval, P., C. Corre, and S. Terre. 1987. Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis. Biotechnology Letters 9: 801–806.

    Article  CAS  Google Scholar 

  • Boyaval, P., J. Seta, and C. Gavach. 1993. Concentrated propionic acid production by electrodialysis. Enzyme and Microbial Technology 15: 683–686.

    Article  CAS  Google Scholar 

  • Brooks, J.R., and C.V. Morr. 1985. Effect of phytate removal treatments upon the molecular weight and subunit composition of major soy protein fractions. Journal of Agricultural and Food Chemistry 33: 1128–1132.

    Article  CAS  Google Scholar 

  • Casademont, C., P. Sistat, B. Ruiz, G. Pourcelly, and L. Bazinet. 2009. Electrodialysis of model salt solution containing whey proteins: Enhancement by pulsed electric field and modified cell configuration. Journal of Membrane Science 328: 238–245.

    Article  CAS  Google Scholar 

  • Causserand, C., J.-P. Lafaille, and P. Aimar. 1994. Transmission of bio-molecules through porous membranes triggered by an external electric field. Journal of Controlled Release 29: 113–123.

    Article  CAS  Google Scholar 

  • Chukwu, U.N., and M. Cheryan. 1999. Electrodialysis of acetate fermentation broths. Applied Biochemistry and Biotechnology 77–79: 485–499.

    Article  Google Scholar 

  • Datta, R., and E.P. Bergemamm. 1996. Process for producing of citric acid and monovalent citrate salts. US Patent 5,532,148.

    Google Scholar 

  • Davis, T.A., and A. Laterra. 1987. Onsite generation of acid and base with bipolar membranes. In Paper presented at the 48th Annual Meeting of the International Water Conference, Pittsburgh, PA.

    Google Scholar 

  • Davis, T.A., J.D. Genders, and D. Pletcher. 1997. A first course in ion permeable membranes. The electrochemical consultancy. UK: Alresford Press LTD.

    Google Scholar 

  • de Boer, R., and T. Robbertsen. 1983. Electrodialysis and ion-exchange processes: The case of milk whey. In Progress in food engineering, ed. C. Cantarelli and C. Peri. Switzerland: Foster-Verlag AG.

    Google Scholar 

  • Elmidaoui, A., F. Lutin, L. Chay, M. Taky, M. Tahaikt, and R. Alaoui Hafidi. 2002. Removal of melassigenic ions for beet sugar syrups by electrodialysis using a new anion-exchange membrane. Desalination 148: 143–148.

    Article  CAS  Google Scholar 

  • Elmidaoui, A., L. Chay, M. Tahaikt, M.A. Menkouchi Sahli, M. Taky, F. Tiyal, A. Khalidi, and R. Alaoui Afidi. 2006. Demineralisation for beet sugar solutions using an electrodialysis pilot plant to reduce melassigenic ions. Desalination 189: 209–214.

    Article  CAS  Google Scholar 

  • Enzminger, J.D., and J.A. Asenjo. 1986. Use of cell recycle in the aerobic fermentative production of citric acid by yeast. Biotechnology 8: 7–12.

    CAS  Google Scholar 

  • Escudier, J.-L., B. Saint Pierre, J.L. Batlle, and M. Moutounet. 1993. ProcĂ©dĂ© et dispositif automatique de stabilisation tartrique de vins. FR Patent 2709308-A1.

    Google Scholar 

  • Escudier, J.-L., M. Moutounet, B. Saint-Pierre, and J.-L. Batlle. 1997. Stabilisation tartrique des vins par membranes: rĂ©sultats et dĂ©veloppements technologiques. In Proceedings of 11ème Colloque Viticole et Ĺ’nologique, Montpellier.

    Google Scholar 

  • Fidaleo, M., and M. Moresi. 2006. Electrodialysis applications in the food industry. In Advances in food and nutrition research, vol. 51, ed. Steve Taylor, 265–360. San Diego: Academic.

    Google Scholar 

  • Firdaous, L., P. Dhulster, J. Amiot, A. Gaudreau, D. Lecouturier, R. Kapel, F. Lutin, L.-P. VĂ©zina, and L. Bazinet. 2009. Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. Journal of Membrane Science 329: 60–67.

    Article  CAS  Google Scholar 

  • Galier, S., and H. Roux-de Balmann. 2004. Study of biomolecules separation in an electrophoretic membrane contactor. Journal of Membrane Science 241: 79–87.

    Article  CAS  Google Scholar 

  • Gonçalves, F., C. Fernandes, P.C. dos Santos, and M.N. de Pinho. 2003. Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. Journal of Food Engineering 59: 229–235.

    Article  Google Scholar 

  • Greiter, M., S. Novalin, M. Wendland, K.-D. Kulbe, and J. Fischer. 2002. Desalination of whey by electrodialysis and ion-exchange resins: Analysis of both processes with regard to sustainability by calculating their cumulative energy demand. Journal of Membrane Science 210: 91–102.

    Article  CAS  Google Scholar 

  • Grib, H., D. Belhocine, H. Lounici, A. Pauss, and N. Mameri. 2000. Desalting of phenylalanine solutions by electrodialysis with ion-exchange membranes. Journal of Applied Electrochemistry 30: 259–262.

    Article  CAS  Google Scholar 

  • Hongo, M., Y. Nomura, and M. Iwahara. 1986. Novel methods of lactic acid production by electrodialysis fermentation. Applied and Environmental Microbiology 52: 314–319.

    CAS  Google Scholar 

  • Huang, C., and T. Xu. 2006. Electrodialysis with bipolar membranes for sustainable development. Environmental Science and Technology 40: 5233–5243.

    Article  CAS  Google Scholar 

  • Ishizaki, A., Y. Nomura, and M. Iwahara. 1990. Built-in electrodialysis batch culture, a new approach to release of end product inhibition. Journal of Fermentation and Bioengineering 70: 108–113.

    Article  CAS  Google Scholar 

  • Kang, Y.J., and K.C. Rhee. 2002. Deacidification of mandarin orange juice by electrodialysis combined with ultrafiltration. Nutraceuticals & Food 7: 411–416.

    Article  CAS  Google Scholar 

  • Kikuchi, K., T. Gotoh, H. Takashashi, S. Higashino, and J.S. Dranoff. 1995. Separation of amino acids by electrodialysis with ion-exchange membranes. Journal of Chemical Engineering of Japan 28: 103–109.

    Article  CAS  Google Scholar 

  • Kim, Y.H., and S.-H. Moon. 2001. Lactic acid recovery from fermentation broth using one-stage electrodialysis. Journal of Chemical Technology and Biotechnology 76: 169–178.

    Article  CAS  Google Scholar 

  • Koter, S., and A. Warszawski. 2000. Electromembrane processes in environment protection. Polish Journal of Environmental Studies 9: 45–56.

    CAS  Google Scholar 

  • Kumar, N.S.K., M.K. Yea, and M. Cheryan. 2003. Soy protein concentrates by ultrafiltration. Journal of Food Science 68: 2278–2283.

    Article  CAS  Google Scholar 

  • LabbĂ©, D., M. Araya-Farias, A. Tremblay, and L. Bazinet. 2005. Electromigration feasibility of green tea catechins. Journal of Membrane Science 254: 101–109.

    Article  Google Scholar 

  • Lapointe, J.-F., S.F. Gauthier, Y. Pouliot, and C. Bouchard. 2005. Fouling of a nanofiltration membrane by a -lactoglobulin tryptic hydrolysate: Impact on the membrane sieving and electrostatic properties. Journal of Membrane Science 253: 89–102.

    Article  CAS  Google Scholar 

  • Lee, E.G., S.-H. Moon, Y.-K. Chang, I.-K. Yoo, and H.N. Chang. 1998. Lactic acid recovery using two-stage electrodialysis and its modelling. Journal of Membrane Science 145: 53–66.

    Article  CAS  Google Scholar 

  • Lee, H.-J., S.-J. Oh, and S.-H. Moon. 2003. Recovery of ammonium sulphate from fermentation waste by electrodialysis. Water Research 37: 1091–1099.

    Article  CAS  Google Scholar 

  • Ling, L.-P., H.-F. Leow, and M.R. Sarmidi. 2002. Citric acid concentration by electrodialysis: Ion and water transport modelling. Journal of Membrane Science 199: 59–67.

    Article  CAS  Google Scholar 

  • Lopez Leiva, M.H. 1988. The use of electrodialysis in food processing. Part 2: Review of practical applications. Lebensmittel- Wissenschaft und-Technologie 21: 177–182.

    CAS  Google Scholar 

  • Lusas, E.W., and K.C. Rhee. 1995. Soy protein processing and utilization. In Practical handbook of soybean processing and utilization, ed. D.R. Erickson. St. Louis, MO: AOCS Press, Champaign, IL; United Soybean Board.

    Google Scholar 

  • Lutin, F., M. Bailly, and D. Bar. 2002. Process improvements with innovative technologies in the starch and sugar industries. Desalination 148: 121–124.

    Article  CAS  Google Scholar 

  • Madzingaidzo, L., H. Danner, and R. Braun. 2002. Process development and optimisation of lactic acid purification using electrodialysis. Journal of Biotechnology 96: 223–239.

    Article  CAS  Google Scholar 

  • Mani, K.N. 1991. Electrodialysis water splitting technology. Journal of Membrane Science 58: 139–146.

    Article  Google Scholar 

  • Mani, K.N. 2000. A process for simultaneous production of amino acid hydrochloride and caustic via electrodialytic water splitting. Eur Pat Appl EP 1,016,651.

    Google Scholar 

  • Maujean, A. 1994. Traitement par le froid artificiel des vins en relation avec leur stabilisation vis-Ă -vis des troubles cristallins tartriques. In Les acquisitions rĂ©cents dans les traitements physiques du vin, ed. B. Doneche. Paris: Lavoisier Tec & Doc.

    Google Scholar 

  • Meena, G., and B. Usha. 1990. Soy protein isolate: Production technology, functional properties, nutritive value and applications—a review. Indian Food Pack Nov-Dec 90: 5–22.

    Google Scholar 

  • Mondor, M., D. Ippersiel, F. Lamarche, and J.I. Boye. 2004a. Production of soy protein concentrates using a combination of electroacidification and ultrafiltration. Journal of Agricultural and Food Chemistry 52: 6991–6996.

    Article  CAS  Google Scholar 

  • Mondor, M., D. Ippersiel, F. Lamarche, and J.I. Boye. 2004b. Effect of electro-acidification treatment and ionic environment on soy protein extract particle size distribution and ultrafiltration permeate flux. Journal of Membrane Science 231: 169–179.

    Article  CAS  Google Scholar 

  • Moresi, M., and F. Sappino. 1998. Effect of some operating variables on citrate recovery from model solutions by electrodialysis. Biotechnology and Bioengineering 59: 344–350.

    Article  CAS  Google Scholar 

  • Moresi, M., and F. Sappino. 2000. Electrodialytic recovery of some fermentation products from model solutions: Techno-economic feasibility study. Journal of Membrane Science 164: 129–140.

    Article  CAS  Google Scholar 

  • Mounts, T.L., W.J. Wolf, and W.H. Martinez. 1987. Processing and utilization. In Soybean: Improvement, production and uses, ed. J.R. Wilcox. WI: American Society of Agronomy, Madison.

    Google Scholar 

  • Mourgues, J. 1993. Utilisation des rĂ©sines Ă©changeuses d’ions. Rev des Oenologues 19: 51–54.

    Google Scholar 

  • Moutounet, M., J.-L. Escudier, and B. Saint-Pierre. 1994. L’électrodialyse, adaptation Ă  la stabilisation tartrique des vins. In Les acquisitions rĂ©cents dans les traitements physiques du vin, ed. B. Doneche. Paris: Lavoisier Tec & Doc.

    Google Scholar 

  • Nagasubramanian, K., F.P. Chandla, and K.J. Liu. 1977. Use of bipolar membranes for generation of acid and base: An engineering and economic analysis. Journal of Membrane Science 2: 109–124.

    Article  CAS  Google Scholar 

  • Nomura, Y., M. Iwahara, and M. Hongo. 1987. Lactic acid production by electrodialysis fermentation using immobilized growing cells. Biotechnology and Bioengineering 30: 788–793.

    Article  CAS  Google Scholar 

  • Nomura, Y., M. Iwahara, and M. Hongo. 1988. Acetic acid production by an electrodialysis fermentation method with a computerized control system. Applied and Environmental Microbiology 54: 137–142.

    CAS  Google Scholar 

  • Nomura, Y., K. Yamamoto, and A. Ishizaki. 1991. Factors affecting lactic acid production rate in the built-in electrodialysis fermentation an approach to high speed batch culture. Journal of Fermentation and Bioengineering 71: 450–452.

    Article  CAS  Google Scholar 

  • Nomura, Y., M. Iwahara, and M. Hongo. 1994. Production of acetic acid by clostridium thermoaceticum in electrodialysis culture using a fermenter equipped with an electrodilyzer. World Journal of Microbiology and Biotechnology 10: 427–432.

    Article  CAS  Google Scholar 

  • Novalic, S., F. Jagschitz, J. Okwor, and K.D. Kulbe. 1995. Behaviour of citric acid during electrodialysis. Journal of Membrane Science 108: 201–205.

    Article  CAS  Google Scholar 

  • Novalic, S., J. Okwor, and K.D. Kulbe. 1996. The characteristics of citric acid separation using electrodialysis with bipolar membranes. Desalination 105: 277–282.

    Article  CAS  Google Scholar 

  • Omosaiye, O., and M. Cheryan. 1979. Low-phytate, full-fat soy protein product by ultrafiltration of aqueous extracts of whole soybeans. Cereal Chemistry 56: 58–62.

    CAS  Google Scholar 

  • Petruccelli, S., and M.C. Anon. 1994. Relationship between the method of obtention and structural and functional properties of soy protein isolates. 1. Structural and hydration properties. Journal of Agricultural and Food Chemistry 42: 2161–2169.

    Article  CAS  Google Scholar 

  • Poulin, J.-F., J. Amiot, and L. Bazinet. 2006. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. Journal of Biotechnology 123: 314–328.

    Article  CAS  Google Scholar 

  • Poulin, J.-F., J. Amiot, and L. Bazinet. 2007. Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength. Journal of Membrane Science 299: 83–90.

    Article  CAS  Google Scholar 

  • Poulin, J.-F., J. Amiot, and L. Bazinet. 2008. Impact of feed solution flow rate on peptide fractionation by electrodialysis with ultrafiltration membrane. Journal of Agricultural and Food Chemistry 56: 2007–2011.

    Article  CAS  Google Scholar 

  • Pourcelly, G., and L. Bazinet. 2009. Developments of bipolar membrane techmology in food and bio-industries. In Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications, ed. A.K. Pabby, S.S.H. Rizvi, and A.M. Sastre. Boca Raton, FL: CRC Press Taylor and Francis Group.

    Google Scholar 

  • Ruckenstein, E., and X. Zeng. 1998. Albumin separation with cibacron blue carrying macroporous chitosan and chitin affinity membranes. Journal of Membrane Science 142: 13–26.

    Article  CAS  Google Scholar 

  • Saint-Pierre, B., J. Batlle, J.-L. Escudier, and J.-L. Batlle. 1995. Obtention de la stabilitĂ© tartrique des vins au moyen d’un procĂ©dĂ© d’électrodialyse contrĂ´lĂ©. In Proceedings of 5ème Symposium International d’oenologie, Bordeaux.

    Google Scholar 

  • Sappino, F., M. Mancini, and M. Moresi. 1996. Recovery of sodium citrate from aqueous solutions by electrodialysis. Italian Journal of Food Science 8: 239–250.

    CAS  Google Scholar 

  • Skorepova, J., and C. Moresoli. 2007. Carbohydrate and mineral removal during the production of low-phytate soy protein isolate by combined electroacidification and high shear tangential flow ultrafiltration. Journal of Agricultural and Food Chemistry 55: 5645–5652.

    Article  CAS  Google Scholar 

  • Sridhar, S. 1987. Method for recovery of l-malic acid. Ger Offen DE 3: 542–861.

    Google Scholar 

  • Strathmann, H. 2004. Ion-exchange membrane separation processes. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Tako, M., and M. Brahim. 1993. Demineralization of molasses by electrodialysis. International Sugar Journal 95: 243–247.

    CAS  Google Scholar 

  • Thampy, S.K., P.K. Narayanan, G.S. Trivedi, D.K. Gohil, and V.K. Indushekhar. 1999. Demineralization of sugar cane juice by electrodialysis. International Sugar Journal 101: 365–366.

    CAS  Google Scholar 

  • Thate, S., G. Eigenberger, and H.-J. Rapp. 2000. Introduction. In Handbook on bipolar membrane technology, ed. A.J.B. Kemperman. Enschende, The Netherlands: Twente University Press.

    Google Scholar 

  • USDA. 2009. Soy stats 2009, a reference guide to important soybean facts & figures. http//:www.Soystats.com.

  • Van der Bruggen, B., A. Koninckx, and C. Vandecasteele. 2004. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research 38: 1347–1353.

    Article  Google Scholar 

  • Vera, E., J. Ruales, M. Dornier, J. Sandeaux, F. Persin, G. Pourcelly, F. Vaillant, and M. Reynes. 2003a. Comparison of different methods for deacidification of clarified passion fruit juice. Journal of Food Engineering 59: 361–367.

    Article  Google Scholar 

  • Vera, E., J. Ruales, M. Dornier, J. Sandeaux, R. Sandeaux, and G. Pourcelly. 2003b. Deacidification of the clarified passion fruit juice using different configurations of electrodialysis. Journal of Chemical Technology and Biotechnology 78: 918–925.

    Article  CAS  Google Scholar 

  • Vera, E., J. Sandeaux, F. Persin, G. Pourcelly, M. Dornier, G. Piombo, and J. Ruales. 2007. Deacidification of clarified tropical fruit juices by electrodialysis. Part II. Characteristics of the deacidified juices. Journal of Food Engineering 78: 1439–1445.

    Article  CAS  Google Scholar 

  • Vera, E., J. Sandeaux, F. Persin, G. Pourcelly, M. Dornier, and J. Ruales. 2009. Deacidification of passion fruit juice by electrodialysis with bipolar membrane after different pretreatments. Journal of Food Engineering 90: 67–73.

    Article  CAS  Google Scholar 

  • Vernhet, A., K. Dupre, L. Boulange-Petermann, V. Cheynier, P. Pellerin, and M. Moutounet. 1999. Composition of tartrate precipitates deposited on stainless steel tanks during the cold stabilization of wines. Part I. White wines. American Journal of Enology and Viticulture 50: 391–397.

    CAS  Google Scholar 

  • Voss, H. 1986. Deacidification of citric acid solutions by electrodialysis. Journal of Membrane Science 27: 165–171.

    Article  CAS  Google Scholar 

  • Wagner, J.R., D.A. Sorgentini, and M.C. Anon. 2000. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. Journal of Agricultural and Food Chemistry 48: 3159–3165.

    Article  CAS  Google Scholar 

  • Weier, A.J., B.A. Glatz, and C.E. Glatz. 1992. Recovery of propionic and acetic acids from fermentation broths by electrodialysis. Biotechnology Progress 8: 479–485.

    Article  CAS  Google Scholar 

  • Xu, T., and C. Huang. 2008. Electrodialysis-based separation technologies: a critical review. AIChE iournal 54(12): 3147–3159.

    Article  CAS  Google Scholar 

  • Young, P. 1974. An introduction to electrodialysis. Journal of Society of Dairy Technology 27: 141–150.

    Article  CAS  Google Scholar 

  • Zhang, S.T., H. Matsuoka, and K. Toda. 1993. Production and recovery of propionic acid and acetic acids in electrodialysis culture of propionibacterium shermanii. Journal of Fermentation and Bioengineering 75: 276–282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mondor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Mondor, M., Ippersiel, D., Lamarche, F. (2012). Electrodialysis in food processing. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_12

Download citation

Publish with us

Policies and ethics