Advertisement

Blood Flow and Oxygenation Status of Gastrointestinal Tumors

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (volume 737)

Abstract

Tumor hypoxia is a major driving force for malignant progression since it can promote local invasion of cancer cells and metastatic spread to distant sites [1–7]. Tumor hypoxia also plays a key role in the development of acquired treatment resistance since it is capable of directly and/or indirectly conferring resistance to therapy [8, 9]. As a result, hypoxia has been shown to act as an independent, adverse prognostic factor [10–14]. Due to this seminal role of tumor hypoxia, knowledge concerning the oxygenation status of malignant tumors in terms of O2 tension distributions and detection of hypoxia are indispensable in the clinical setting. For this reason, the respective oxygenation status for gastrointestinal (GI) malignancies have been compiled in this review, together with blood flow values (where available), which are major determinants of the oxygen status. Pretherapeutic data of the following tumor entities will be presented: Cancers of the stomach, gallbladder, common bile duct, pancreas, colon, rectum, and primary and metastatic liver tumors.

Keywords

Rectal Cancer Oxygenation Status Tumor Entity Gastrointestinal Tumor Metastatic Liver Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by a grant from the Deutsche Krebshilfe (106758).

References

  1. 1.
    Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9PubMedCrossRefGoogle Scholar
  2. 2.
    Vaupel P (2009) Pathophysiology of tumors. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin, pp 51–92CrossRefGoogle Scholar
  3. 3.
    Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206PubMedCrossRefGoogle Scholar
  4. 4.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9:10–17PubMedCrossRefGoogle Scholar
  5. 5.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar
  6. 6.
    Vaupel P, Mayer A, Hoeckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedCrossRefGoogle Scholar
  7. 7.
    Hoeckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276CrossRefGoogle Scholar
  8. 8.
    Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin, pp 273–290CrossRefGoogle Scholar
  9. 9.
    Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–36PubMedCrossRefGoogle Scholar
  10. 10.
    Hoeckel M, Knoop C, Schlenger K et al (1993) Intra-tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50CrossRefGoogle Scholar
  11. 11.
    Hoeckel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515Google Scholar
  12. 12.
    Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943PubMedGoogle Scholar
  13. 13.
    Fyles A, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156PubMedCrossRefGoogle Scholar
  14. 14.
    Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31–39PubMedGoogle Scholar
  15. 15.
    Komar G, Kauhanen S, Liukko K et al (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517PubMedCrossRefGoogle Scholar
  16. 16.
    Holm E, Hagmueller E, Staedt U et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55:1373–1378PubMedGoogle Scholar
  17. 17.
    Hagmueller E, Kollmar HB, Guenther H-J et al (1995) Protein metabolism in human colon carcinomas: in vivo investigations using a modified tracer technique with L-[1-13  C]leucine. Cancer Res 55:1160–1167Google Scholar
  18. 18.
    DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965PubMedCrossRefGoogle Scholar
  19. 19.
    Rau B, Wust P, Tilly W (2000) Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48:381–391PubMedCrossRefGoogle Scholar
  20. 20.
    Luedemann L, Sreenivasa G, Amthauer H et al (2009) Use of H215O-PET for investigating perfusion changes in pelvic tumors due to regional hyperthermia. Int J Hyperthermia 25:299–308CrossRefGoogle Scholar
  21. 21.
    Cho C-H, Sreenivasa G, Plotkin M et al (2010) Tumour perfusion assessment during regional hyperthermia treatment: comparison of temperature probe measurement with H215O-PET perfusion. Int J Hyperthermia 26:404–411PubMedCrossRefGoogle Scholar
  22. 22.
    Wendling P, Manz R, Thews G et al (1984) Heterogeneous oxygenation of rectal carcinomas in humans: a critical parameter for preoperative irradiation. Adv Exp Med Biol 180:293–300PubMedCrossRefGoogle Scholar
  23. 23.
    Endrich B (1988) Hyperthermie und mikrozirkulation. Contr Oncol 31:1–138Google Scholar
  24. 24.
    Vaupel P, Hoeckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235PubMedCrossRefGoogle Scholar
  25. 25.
    Kallinowski F, Buhr HJ (1995) Can oxygenation status of rectal carcinomas be improved by hyperoxia? In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 291–296Google Scholar
  26. 26.
    Kallinowski F, Buhr HJ (1995) Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 205–209Google Scholar
  27. 27.
    Mattern J, Kallinowski F, Herfarth C et al (1996) Association of resistance-related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67:20–23PubMedCrossRefGoogle Scholar
  28. 28.
    Feldmann HJ, Molls M, Auberger T et al (1995) Oxygenation and perfusion status of recurrent human tumors. In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 319–326Google Scholar
  29. 29.
    Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922PubMedCrossRefGoogle Scholar
  30. 30.
    Graffman S, Bjoerk P, Ederoth P et al (2001) Polarographic pO2 measurements of intra-abdominal adenocarcinoma in connection with intraoperative radiotherapy before and after change of oxygen concentration of anaesthetic gases. Acta Oncol 40:105–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Tumor Pathophysiology Division, Department of Radiooncology and RadiotherapyUniversity Medical CenterMainzGermany
  2. 2.Department of Radiotherapy and Radiooncology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
  3. 3.Institute of Functional and Clinical AnatomyUniversity Medical CenterMainzGermany

Personalised recommendations