Advertisement

Catheter-Based Coronary Angiography

  • Robert F. Wilson
  • Zeev Vlodaver
Chapter

Abstract

The primary goal of catheter-based coronary angiography is the identification, localization, and assessment of stenotic lesions present within the coronary arteries that will enable us to determine the pathophysiologic significance of the obstructive lesions in question regarding ischemia vs. nonischemia.

This chapter presents a description and illustration of the use of catheter-based coronary angiography. First, it deals with technical aspects, vascular access, and early recognition of complications that may occur with this procedure and its prevention. Also, it illustrates angiographic patterns of collateral circulation associated with severe obstructive coronary disease.

The use of catheter-based coronary angiography provides significant information that is important for the management of the individual patient with and without ischemic heart disease.

Keywords

Coronary Artery Optical Coherence Tomography Fractionate Flow Reserve Coronary Flow Reserve Angiographic Catheter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Radner S. An attempt at the roentgenologic visualization of coronary blood vessels in man. Acta Radiol (Old Series). 1945;26:497–502.CrossRefGoogle Scholar
  2. 2.
    De AG. l’arteriographie methodique des coronaries grace a l’Acetylcholine. Arch Mal Coeur. 1959;52:1121.Google Scholar
  3. 3.
    Bilgutay AM, Lillehei CW. Single and double contrast coronary arteriography: utilizing acetylcholine asystole with controlled return of heart rate using a cardiac pacemaker. J ThoracCardiovasc Surg. 1962;44:617.Google Scholar
  4. 4.
    Sones FM, Shirey EK. Cine coronary arteriography. Mod Concepts Cardiovascv. 1962;31:735–8.Google Scholar
  5. 5.
    Amplatz K, Harner R. A new subclavian artery catheterization technic. Preliminary report. Radiology. 1962;78:963.PubMedGoogle Scholar
  6. 6.
    Judkins MP. Selective coronary arteriography: part I: apercutaneurs transfemoral technic. Radiology. 1967;89:815–24.PubMedGoogle Scholar
  7. 7.
    Amplatz K, Formanek G, Stanger P, et al. Mechanics of selective coronary artery catheterization via femoral approach. Radiology. 1967;89:1040–7.PubMedGoogle Scholar
  8. 8.
    Seldinger SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1952;39:368–76.Google Scholar
  9. 9.
    Judkins MP, Kidd HJ, Frische LH, et al. Lumen following J-guide for catheterization of tortuous vessels. Radiology. 1967;88:1127–30.PubMedGoogle Scholar
  10. 10.
    Archbold RA, Robinson NM, Schilling RJ. Radial artery access for coronary angiography and percutaneous coronary intervention. BMJ. 2004;329:443–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Nagai S, Abe S, Sato T, et al. Ultrasonic assessment of vascular complications in coronary arteriography and angioplasty after transradial approach. Am J Cardiol. 1999;83:180–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Goldstein JA, Kern M, Wilson R. A novel automated injection system for angiography. J Intervent Cardiol. 2001;14:147–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Feldman RL, Pepine CJ, Conti CR. Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation. 1981;64:324–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson RF, White CW. Coronary arteriography. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes DR, editors. Cardiovascular medicine. 3rd ed. London: Springer; 2007.CrossRefGoogle Scholar
  15. 15.
    Colt HG, Begg RJ, Saporito JJ, et al. Cholesterol emboli after cardiac catheterization. Medicine. 1988;67:389–400.PubMedCrossRefGoogle Scholar
  16. 16.
    Eggbrecht H, Oldenburg O, Dirsch O, et al. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7621 patients. Cathet Cardiovasc Intervent. 2000;49:389–94.CrossRefGoogle Scholar
  17. 17.
    Gottdiener JS, Papademetriou V, Notargiacomo A, et al. Incidence and cardiac effects of systemic venous air embolism: echocardiographic evidence of arterial embolization via non-cardiac shunt. Arch Intern Med. 1988;148:795–800.PubMedCrossRefGoogle Scholar
  18. 18.
    Marco AP, Furman WR. Venous air embolism, airway difficulties, and massive transfusion. Surg Clin North Am. 1993;73:213–28.PubMedGoogle Scholar
  19. 19.
    Sticherling C, Berkefeld J, et al. Transient bilateral cortical blindness after coronary angiography. Lancet. 1998;351:570.PubMedCrossRefGoogle Scholar
  20. 20.
    Gaglani RD, Turk AA, Mehra MR, et al. Ventricular standstill complicating left heart catheterization in the presence of uncomplicated right bundle brunch block. Cathet Cardiovasc Diagn. 1992;26:212–4.CrossRefGoogle Scholar
  21. 21.
    White CW, Eckberg DL, Inasaka T, et al. Effects of angiographic contrast media on sino-atrial nodal function. Cardiovasc Res. 1976;10:214–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Ritchie JL, Nissen SE, Douglas JS, et al. American college of cardiology cardiovascular imaging committee. Use of non-ionic or low osmolar contrast agents in cardiovascular procedures. J Am Coll Cardiol. 1993;21:269–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Coleman C, Castaneda-Zuniga WR, Amplatz K. Three-dimensional teaching model for coronary angiography. Cardiovasc Intervent Radiol. 1982;5:154–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Paulin S. Terminology for radiographic projections in cardiac angiography [Letter]. Cathet Cardiovasc Diagn. 1981;7:341.PubMedCrossRefGoogle Scholar
  25. 25.
    Marcus ML, Armstrong ML, Heistad DD, et al. A comparison of three methods of evaluation coronary obstructive lesions: Postmortem arteriography, pathological examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol. 1982;49:1699–706.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson MR. A normal coronary artery: what size is it? Circulation. 1992;86:331–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Marcus ML, Skorton DJ, Johnson MR, et al. Visual estimates of percent diameter coronary stenosis: “A battered gold standard”. J Am Coll Cardiol. 1988;11:882–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Dick C, Wyche K, Homans DC, et al. Effect of distending pressure on intravascular ultrasound measurements of lumen dimensions. Circulation. 1990;82: 459(abstr III).Google Scholar
  30. 30.
    Kalin JK, Rutherford BD, MCConobay DR, et al. Comparison of procedural results and risks of coronary angioplasty in men and women for conditions other than acute myocardial infarction. Am J Card. 1992;69:1241–2.CrossRefGoogle Scholar
  31. 31.
    O’Connor NJ, Morton JR, Birkmeyer JD, et al. Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Northern New England cardiovascular disease study group. Circulation. 1996;93(4):652–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Brown BG, Petersen RB, Pierce CD, et al. Dynamics of human coronary stenosis: interaction among stenosis flow, distending pressure and vasomotor tone. In: Santamore WP, Bove AA, editors. Coronary artery disease. Cardiac imaging. Baltimore: Urban and Schwarzenberg; 1982. p. 199.Google Scholar
  33. 33.
    Reiber JHC, Serruys PW, Kooijman CJ, Slager CJ, et al. Approaches to standardization in acquisition and quantitation of arterial dimensions from cineangiograms. In: Reiber JHL, Serruys PW, editors. State of the art in quantitative coronary arteriography. Boston: Martinus Nihoff; 1986. p. 145.CrossRefGoogle Scholar
  34. 34.
    Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitations of coronary cineangiograms. Circulation. 1985;71:280–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Whitings JS, Pfaff JM, Eigler NL. Advantages and limitations of videodensitometry in quantitative coronary angiography. In: Reiber JHC, Serruys PW, editors. Quantitative coronary arteriography. The Netherlands: Kluwer Academic Publishers; 1988. p. 43.Google Scholar
  36. 36.
    Lesperance J, Hudon G, White CW, et al. Comparison by quantitative angiographic assessment of coronary stenosis of one view showing the severest narrowing to two orthogonal views. Am J Cardiol. 1989;64:462–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Katz LN, Lindner E. Quantitative relation between reactive hyperemia and the myocardial ischemia which it follows. Am J Physiol. 1939;126:283.Google Scholar
  38. 38.
    Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;47:341.CrossRefGoogle Scholar
  39. 39.
    Fulton WFM. Arterial anastomosis in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomosis in health and disease. Scot Med J. 1964;8:466–74.Google Scholar
  40. 40.
    Baroldi G, Mantero O, Scomazzoni G. The collaterals of coronary arteries in normal and pathologic conditions. Circ Res. 1956;4:223–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Schaper W, Sharma HS, Quinkler W, et al. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol. 1990;15:513–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Harrison DG, Sellke FW, Quillen JE. Neurohormonal regulation of coronary collateral vasomotor tone. Basic Res Cardiol. 1990;85 suppl 1:121–9.PubMedGoogle Scholar
  43. 43.
    Marcus ML. The Coronary Circulation in Health and Disease. New York: McGraw-Hill; 1983.Google Scholar
  44. 44.
    Takeshita A, Koiwaya Y, Nakamura M, et al. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest. 1982;82:319.PubMedCrossRefGoogle Scholar
  45. 45.
    Rentrop KP, Cohen M, Blanke H, et al. Changes in collateral channel filling immediately after controlled coronary artery occlusion by angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Meir B, Luethy P, Finci L, et al. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation. 1987;75:906–13.CrossRefGoogle Scholar
  47. 47.
    Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation. 1992;85:1197–204.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation. 1989;79:791–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Epstein SE. Influence of stenosis severity on coronary collateral development and importance of collaterals in maintaining left ventricular function during acute coronary occlusion. Am J Cardiol. 1988;61:866–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Topol EJ, Ellis SG. Coronary collaterals revisited: accessory pathway to myocardial preservation during infarction. Circulation. 1991;83:1084–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Bloch JH, Hurwitz MM, Edwards JE. Myocardial environment as protection against coronary atherosclerosis. Geriatrics. 1969;24:83.PubMedGoogle Scholar
  52. 52.
    Bruschke AVG, Sheldon WC, Shirey EK, Proudfit WL. A half century of selective coronary arteriography. J Am Coll Cardiol. 2009;54:2139–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92:2333–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Farooq MU, Khasnis A, Majid A, et al. The role of optical coherence tomography in vascular medicine. Vasc Med. 2009;14:63–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Tahara N, Imaizumi T, Virmani R, et al. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nuc Med. 2009;50:331–4.CrossRefGoogle Scholar
  56. 56.
    Ovitt TW, Durst S, Moore R, Amplatz K. Guide wire thrombogenecity and its reduction. Radiology. 1974;111:43–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations