Skip to main content

Acute Catheter-Based Mechanical Circulatory Support

  • Chapter
  • First Online:
  • 2619 Accesses

Abstract

Procedural and technology-based advances in circulatory support have enabled an increased number of patients to receive percutaneous coronary intervention (PCI). Without these advances, many patients would not have been considered for the procedure because of their elevated risk for complications. This chapter describes transcatheter-based circulatory support devices in clinical use today as well as data that support their usage and suggested protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hurst JW. The first coronary angioplasty as described by Andreas Gruentzig. Am J Cardiol. 1986;57:185–6.

    Article  PubMed  CAS  Google Scholar 

  2. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1:263.

    Article  PubMed  CAS  Google Scholar 

  3. Gruntzig AR, Senning A, Siegenthlaer WE. Nonoperative dilatation of coronary-artery stenosis. Percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301:61–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kantrowitz A, Tjonneland S, Freed PS, et al. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA. 1968;203:135–40.

    Google Scholar 

  5. Talpins NL, Kripke DC, Goetz RH. Counterpulsation and intraaortic balloon pumping in cardiogenic shock. Circ Dynam Arch Surg. 1968;97:991–9.

    CAS  Google Scholar 

  6. Scheidt S, Wilner G, Mueller H, et al. Intraortic balloon pumping in cardiogenic shock. Report of a cooperative clinical trial. N Engl J Med. 1973;288:979–84.

    Article  PubMed  CAS  Google Scholar 

  7. Willerson JT, Curry GC, Watson JT, et al. Intra-aortic balloon counterpulsation in patients with cardiogenic shock, medically refractory heart failure, and/or recurrent ventricular tachycardia. Am J Med. 1975;58:183–91.

    Article  PubMed  CAS  Google Scholar 

  8. DeWood MA, Notske RN, Hensley GR, et al. Intra-aortic balloon counterpulsation with and without reperfusion for myocardial infarction shock. Circulation. 1980;61:1105–12.

    Article  PubMed  CAS  Google Scholar 

  9. Nanas JN, Moulopoulos SD. Counterpulsation: historical background, technical improvements, hemodynamic and metabolic effects. Cardiology. 1994;84:156–67.

    Article  PubMed  CAS  Google Scholar 

  10. Kern MJ. Cardiac support devices: intra-aortic balloon pump. In: The cardiac catheterization handbook. 4th ed. St. Louis: Mosby; 2003. p. 479–94.

    Google Scholar 

  11. Shawl FA, Domanski MJ, Hernandez TJ, et al. Emergency percutaneous cardiopulmonary bypass with cardiogenic shock from acute myocardial infarction. Am J Cardiol. 1989;64:967–70.

    Article  PubMed  CAS  Google Scholar 

  12. Vogel RA, Shawl FA, Tommaso CL, et al. Initial report of the national registry of elective cardiopulmonary bypass SUPPORTED coronary angioplasty. J Am Coll Cardiol. 1990;15:23–9.

    Article  PubMed  CAS  Google Scholar 

  13. Shawl FA, Domanski MJ, Punja S. Percutaneous cardiopulmonary bypass support in high risk patients undergoing percutaneous transluminal coronary angioplasty. Am J Cardiol. 1989;64:1258–63.

    Article  PubMed  CAS  Google Scholar 

  14. Lincoff AM, Popma JJ, Ellis SG, et al. Abrupt vessel closure complicating coronary angioplasty. Clinical, angiographic, and therapeutic profile. J Am Coll Cardiol. 1992;19:926–35.

    Article  PubMed  CAS  Google Scholar 

  15. Bauters C, Van Belle E, Lablanche JM et al. Predictive factors of primary success after coronary angioplasty. Arch Mal Coeur Vaiss. 1994 Feb; 87(2); 193–9

    Google Scholar 

  16. Meier B. Percutaneous coronary intervention. In: Topel EJ, editor. Textbook of cardiovascular medicine. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 1665–76.

    Google Scholar 

  17. Brigouri C, Sardis C, Pagnotta P, et al. Elective versus provisional intra-aortic balloon pumping in high-risk percutaneous transluminal coronary angioplasty. Am Heart J. 2003;145:700–7.

    Article  Google Scholar 

  18. Mishra S, Chu WC, Torguson R, et al. Role of prophylactic intra-aortic balloon pump in high-risk patients undergoing percutaneous coronary intervention. Am J Cardiol. 2006;98:608–12.

    Article  PubMed  Google Scholar 

  19. Stone GW, Marsalese D, Brodie BR, et al. A prospective, randomized evaluation of prophylactic intraaortic balloon counterpulsation in high risk patients with acute myocardial infarction treated with primary angioplasty. J Am Coll Cardiol. 1997;29:1459–67.

    Article  PubMed  CAS  Google Scholar 

  20. Mackensie DJ, Wagner WH, Kulber DA, et al. Vascular complications of the intra-aortic balloon pump. Am J Surg. 1992;164:517–21.

    Article  Google Scholar 

  21. Cook L, Pillar B, McCord G, et al. Intra-aortic balloon pump complications: a five-year retrospective study of 283 patients. Heart Lung. 1999;28:195–202.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen M, Dawson MS, Kopistansky C, et al. Sex and other predictors of intra-aortic balloon conterpulsation-related complications: prospective study of 1119 consecutive patients. Am Heart J. 2000;139:282–7.

    PubMed  CAS  Google Scholar 

  23. Meisel S, Shocat M, Sheikha SA, et al. Utilization of low profile intraaortic balloon catheters inserted by the sheathless technique in acute cardiac patients: clinical efficacy with a very low complication rate. Clin Cardiol. 2004;27:600–4.

    Article  PubMed  Google Scholar 

  24. Vogel RA, Tommaso CL, Gundry SR. Initial experience with coronary angioplasty and aortic valvuloplasty using elective semi-percutaneous cardiopulmonary support. Am J Cardiol. 1988;62:811–3.

    Article  PubMed  CAS  Google Scholar 

  25. Phillips SJ, Zeff RH, Kongtahworn C, et al. Percutaneous cardiopulmonary bypass: application and indication for use. Ann Thorac Surg. 1989;47:121–3.

    Article  PubMed  CAS  Google Scholar 

  26. Vogel RA, Shawl FA, Tommasso CL, et al. Initial report of the national registry of elective cardiopulmonary bypass supported coronary angioplasty. J Am Coll Cardiol. 1990;15:23–9.

    Article  PubMed  CAS  Google Scholar 

  27. Schreiber TL, Kodali UR, O’Neill WW, et al. Comparison of acute results of prophylactic intraaortic balloon pumping with cardiopulmonary support for percutaneous transluminal coronary angioplasty (PTCA). Cathet Cardiovasc Diagn. 1998;45:115–9.

    Article  PubMed  CAS  Google Scholar 

  28. Cyrus T, Mathews SJ, Lasala JM, et al. Use of mechanical assist during high- risk PCI and STEMI with cardiogenic shock. Catheter Cardiovasc Interv. 2010;75:S1–6.

    Article  PubMed  Google Scholar 

  29. de Souza CF, de Souza BF, De Lima VC, et al. Percutaneous mechanical assistance for the failing heart. J Interv Cardiol. 2010;23:195–202.

    Article  PubMed  Google Scholar 

  30. Sjauw KD, Remmelink M, Baan JR, et al. Left ventricular unloading in acute ST-segment elevation myocardial infarction patients is safe and feasible and provides acute and sustained left ventricular recovery. J Am Coll Cardiol. 2008;51:1044–6.

    Article  PubMed  Google Scholar 

  31. Henriques JP, Remmelink M, Baan Jr J, et al. Safety and feasibility of elective high-risk percutaneous coronary intervention procedures with left ventricular support of the Impella® Recover 2.5. Am J Cardiol. 2006;97:990–2.

    Article  PubMed  Google Scholar 

  32. Dixon SR, Henriques JP, Mauri L, et al. A prospective feasibility trial investigating the use of the Impella® 2.5 System in patients undergoing high-risk percutaneous coronary intervention (the PROTECT I trial): initial U.S. experience. JACC Cardiovasc Interv. 2009;2:91–6.

    Article  PubMed  Google Scholar 

  33. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584–8.

    Article  PubMed  Google Scholar 

  34. Cheng JM, den Uil CA, Hoeks SE, et al. Percutaneous left ventricular assist device vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30:2102–8.

    Article  PubMed  Google Scholar 

  35. Pulido JN, Park SJ, Charenjit S, et al. Percutaneous left ventricular assist devices: clinical uses, future applications and anesthetic considerations. J Cardiothorac Vasc Anesth. 2010;24:478–86.

    Article  PubMed  Google Scholar 

  36. Aragon J, Lee MS, Kar S, et al. Percutaneous left ventricular assist device: “TandemHeartTM” for high-risk coronary intervention. Catheter Cardiovasc Interv. 2005;65:346–52.

    Article  PubMed  Google Scholar 

  37. Vranckx P, Meliga E, De Jaegere PP, et al. The TandemHeart™ percutaneous transseptal left ventricular assist device: a safeguard in high-risk percutaneous coronary interventions. The six-year Rotterdam experience. EuroIntervention. 2008;4:331–7.

    Article  PubMed  Google Scholar 

  38. Atiemo AD, Conte JV, Heldman AW. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv. 2006;68:78–82.

    Article  PubMed  Google Scholar 

  39. Prutkin JM, Strote JA, Stout KK. Percutaneous right ventricular assist device as support for cardiogenic shock due to right ventricular infarction. J Invasive Cardiol. 2008;20:E215–6.

    PubMed  Google Scholar 

  40. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–83.

    Article  PubMed  Google Scholar 

  41. Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart™ percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469e1–4698.

    Article  Google Scholar 

  42. Rajdev S, Krishnan P, Irani A, et al. Clinical application of prophylactic percutaneous left ventricular assist device (TandemHeart™) in high-risk percutaneous coronary intervention using an arterial preclosure technique: single-center experience. J Invasive Cardiol. 2008;20:67–72.

    PubMed  Google Scholar 

  43. Al-Husami W, Yturralde F, Mohanty G, et al. Single-center experience with the TandemHeart™ percutaneous ventricular assist device to support patients undergoing high-risk percutaneous coronary intervention. J Invasive Cardiol. 2008;20:319–22.

    PubMed  Google Scholar 

  44. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431–8.

    Article  PubMed  CAS  Google Scholar 

  45. Schober A, Zercecke A. Chemokines in vascular remodeling. Thromb Haemost. 2007;97:730–7.

    PubMed  CAS  Google Scholar 

  46. Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res. 2007;100:967–78.

    Article  PubMed  CAS  Google Scholar 

  47. Korshunov VA, Schwartz SM, Berk BC. Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27:1722–8.

    Article  PubMed  CAS  Google Scholar 

  48. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  49. Bond MG, Adams MR, Bullock BC. Complicating factors in evaluating coronary artery atherosclerosis. Artery. 1981;9:21–9.

    PubMed  CAS  Google Scholar 

  50. Bonthu S, Heistad DD, Chappel DA, et al. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 1997;17:2333–40.

    Article  PubMed  CAS  Google Scholar 

  51. Armstrong ML, Heistad DD, Marcus ML, et al. Structural and hemodynamic response of peripheral arteries of macque monkeys to atherogenic diet. Arteriosclerosis. 1985;5:336–46.

    Article  PubMed  CAS  Google Scholar 

  52. Courtman DW, Schwartz SM, Hart CE. Sequential injury of the rabbit abdominal aorta induces intramural coagulation and luminal narrowing independent of intimal mass: extrinsic pathway inhibition eliminates luminal narrowing. Circ Res. 1998;82:996–1006.

    Article  PubMed  CAS  Google Scholar 

  53. Cote G, Tardif JC, Lesperance J, et al. Effects of probucol on vascular remodeling after coronary angioplasty. Multivitamins and Probucol Study Group. Circulation. 1999;99:30–5.

    Article  PubMed  CAS  Google Scholar 

  54. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful transluminal coronary angioplasty: serial angiographic follow-up of 229 consecutive patients. J Am Coll Cardiol. 1988;12:616–23.

    Article  PubMed  CAS  Google Scholar 

  55. Tardif JC, Cote G, Lesperance J, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty: multivitamins and Probucol Study Group. N Engl J Med. 1997;337:365–72.

    Article  PubMed  CAS  Google Scholar 

  56. Korbling M, Estrov Z. Adult stem cells for tissue repair: a new therapeutic concept? N Engl J Med. 2003;349:570–82.

    Article  PubMed  Google Scholar 

  57. Ross JJ, Hong Z, Willenbring Z, et al. Cytokine-induced differentiation of multipotent adult progenitor cells Into functional smooth muscle cells. J Clin Invest. 2006;116:3139–49.

    Article  PubMed  CAS  Google Scholar 

  58. Shober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 2008;28:1950–9.

    Article  Google Scholar 

  59. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;17:2131–41.

    Article  Google Scholar 

  60. Hasdai D, Berger PB, Battler A, Holmes Jr DR, editors. Cardiogenic shock: diagnosis and treatment. Totowa: Humana Press; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladwin S. Das MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Das, G.S., Raveendran, G., Schultz, J.C. (2012). Acute Catheter-Based Mechanical Circulatory Support. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_25

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics