Skip to main content

Stem Cells and Atherosclerosis

  • Chapter
  • First Online:
Coronary Heart Disease
  • 2684 Accesses

Abstract

Many factors contribute to the development of atherosclerosis, including endothelial dysfunction. Research shows that certain types of circulating stem cells and progenitor cells may counteract the development of atherosclerosis following vessel injury and promote vascular health. Yet other studies indicate that these same cells may be involved in the disease’s progression. In this chapter, we sort through these findings and examine the limitations of research to date in order to better understand the role of endothelial progenitor cells and smooth muscle progenitor cells in atherosclerosis and plaque rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross R. Atherosclerosis – an inflammatory disease. NEJM. 1995;340:115–26.

    Google Scholar 

  2. Goldschmidt-Clermont PJ, Creager MA, Losordo DW, et al. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation. 2005;112:3341.

    Article  Google Scholar 

  3. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  PubMed  CAS  Google Scholar 

  4. Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.

    Article  PubMed  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture. Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.

    Article  PubMed  CAS  Google Scholar 

  6. Zoll J, Fontaine V, Gourdy P, et al. Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res. 2008;77:471–80.

    Article  PubMed  CAS  Google Scholar 

  7. Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362–7.

    PubMed  CAS  Google Scholar 

  8. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.

    Article  PubMed  CAS  Google Scholar 

  9. Simper D, Stalboerger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation. 2002;106:1199–204.

    Article  PubMed  CAS  Google Scholar 

  10. Caplice NM, Bunch TJ, Stalboerger PG, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003;100:4754–9.

    Article  PubMed  CAS  Google Scholar 

  11. Metharom P, Liu C, Wang S, et al. Myeloid lineage of high proliferative potential human smooth muscle outgrowth cells in circulating in blood and vasculogenic smooth muscle-like cells in vivo. Atherosclerosis. 2008;198:29–38.

    Article  PubMed  CAS  Google Scholar 

  12. Moreno PR, Purushothaman R, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta. Implications for plaque vulnerability. Circulation. 2004;110:2032–8.

    Article  PubMed  Google Scholar 

  13. Zhang Y, Cliff WJ, Schoefl GI, et al. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143:164–72.

    PubMed  CAS  Google Scholar 

  14. Langheinrich AC, Michniewicz A, Sedding DG, et al. Correlation of vaso vasorum neovascularization and plaque progression in aortas of apolipoprotein E−/−/low-density lipoprotein−/− double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:347–52.

    Article  PubMed  CAS  Google Scholar 

  15. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003;100:4736–41.

    Article  PubMed  CAS  Google Scholar 

  16. Moreno PR, Purushothaman KR, Zias E, et al. Neovascularization in human atherosclerosis. Curr Mole Med. 2006;6:457–77.

    Article  CAS  Google Scholar 

  17. George J, Afek A, Abashidze A, et al. Transfer of endothelial progenitor and bone marrow cells influence atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005;25:2636–41.

    Article  PubMed  CAS  Google Scholar 

  18. Silvestre J-S, Gojova A, Brun V, et al. Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation. 2003;108:2839–42.

    Article  PubMed  Google Scholar 

  19. Torsney E, Mandal K, Halliday A, et al. Characterization of progenitor cells in human atherosclerotic vessels. Atherosclerosis. 2007;191:259–64.

    Article  PubMed  CAS  Google Scholar 

  20. Zengin E, Chalajour F, Gehling UM, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.

    Article  PubMed  CAS  Google Scholar 

  21. Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.

    Article  PubMed  CAS  Google Scholar 

  22. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003;108:457–63.

    Article  PubMed  Google Scholar 

  23. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9.

    Article  PubMed  CAS  Google Scholar 

  24. Daniel JM, Tillmanns H, Sedding DG. Time course analysis of bone marrow-derived progenitor cell transdifferentiation during neointima formation. Circulation. 2009;120:S1130.

    Google Scholar 

  25. Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. JCI. 2004;113:1258–65.

    PubMed  CAS  Google Scholar 

  26. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.

    Article  PubMed  CAS  Google Scholar 

  27. Kunz GA, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Heart. 2006;152:109–95.

    Google Scholar 

  28. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.

    Article  PubMed  CAS  Google Scholar 

  29. Xiao Q, Kiechl S, Patel S, et al. Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis-results from a large population-based study. PLoS One. 2007;2:e975.

    Article  PubMed  Google Scholar 

  30. Guven H, Shepherd RM, Bach RG, et al. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol. 2006;48:1579–87.

    Article  PubMed  Google Scholar 

  31. George J, Goldstein E, Abashidze S, et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004;25:1003–8.

    Article  PubMed  CAS  Google Scholar 

  32. Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7:425–33.

    Article  PubMed  CAS  Google Scholar 

  33. Schachinger V, Erbs S, Elasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    Article  PubMed  CAS  Google Scholar 

  34. Schachunger V, Erbs S, Elasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.

    Article  Google Scholar 

  35. Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction. Circulation. 2007;116:366–74.

    Article  PubMed  Google Scholar 

  36. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction – eighteen months’ follow-up data from randomized, controlled BOOST (bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

    Article  PubMed  Google Scholar 

  37. Lunde K, Solheim S, Forfang K, et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells. Safety, clinical outcome, and serial changes in left-ventricular function during 12-months’ follow-up. J Am Coil Cardiol. 2008;51:674–6.

    Article  Google Scholar 

  38. Liu PX, Zhang L, Liao WB, et al. Transfusion of allogeneic mesenchymal stem cells promotes progression of atherosclerotic plaque in rabbits. Zhongguo Shi Yan Xue Ye Xue ZaZhi. 2009;17:700–5.

    CAS  Google Scholar 

  39. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    Article  PubMed  CAS  Google Scholar 

  40. Losordo DW, Henry TD, Schatz RA, et al. Autologous CD34+ cell therapy for refractory angina: 12 month results of the phase II ACT34-CMI study. Circulation. 2009;120:S1132.

    Google Scholar 

  41. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem cells mobilized with granulocyte-colony stimulating factor on left-ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet. 2004;363:751–6.

    Article  PubMed  CAS  Google Scholar 

  42. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary infusion of CD133+ enriched bone marrow progenitors promotes cardiac recovery after recent myocardial infarction. Feasibility and safety. Circulation. 2005;112:I178–83.

    PubMed  Google Scholar 

  43. Mansour S, Vanderheyden M, De Bruyne B, et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol. 2006;47:1727–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay H. Traverse MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Traverse, J.H. (2012). Stem Cells and Atherosclerosis. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics