Skip to main content

Nonlinear Dynamic Modeling of Nano and Macroscale Systems

Using Finite Elements and an Intrinsic Beam Formulation

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications
  • 1894 Accesses

Abstract

This chapter presents a nonlinear finite element approach for modeling nano and macroscale beam-like materials and structures. The work is based on a series of three articles published by the author and his co-workers from 2007 to 2010 (Leamy 2007; Leamy and Lee 2009; Leamy 2010). The chapter begins by describing a finite element procedure for discretizing a set of nonlinear, intrinsic beam equations. These equations are notable for their use of curvature and strain, vice rotational and displacement, field variables. Included in the finite element development is a discussion of zero energy modes and their remediation. Attention then turns to application of the approach in studying dynamics of systems at the nanoscale (e.g., carbon nanotubes) through to the macroscale (e.g., helical springs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arroyo M, Belytschko T 2003 A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes. Mech Mater 35:193–215

    Article  Google Scholar 

  • Belytschko T, Xiao SP, Schatz GC, Ruogg RS 2002Atomistic simulations of nanotube fracture. Phys Rev B 65:235430

    Google Scholar 

  • Borri M, Mantegazza P 1985 Some contributions on structural and dynamic modeling of helicopter rotor blades. I’Aerotecnica Missili e Spazio 64(9):143–154

    MATH  Google Scholar 

  • Brenner DW 1990 Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471

    Article  Google Scholar 

  • Cesnik CES, Shin S 2001 On the modeling of integrally actuated helicopter blades. Int J Solids Struct 38:1765–1789

    Article  Google Scholar 

  • Chung J, Hulbert GM 1993 A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- method. J Appl Mech 60(2):371–375

    Article  MathSciNet  Google Scholar 

  • Gobat JI, Grosenbaugh MA 2001 Application of the generalized-α method to the time integration of the cable dynamics equations. Comput Methods Appl Mech Eng 190:4817–4829

    Article  MathSciNet  Google Scholar 

  • Hibbitt, Karlsson, Sorensen, (2011), ABAQUS Theory Manual v6.10, Dassault Systèmes Inc.

    Google Scholar 

  • Hodges DH (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26(11):1253–1273

    Article  MathSciNet  Google Scholar 

  • Hodges DH 2003 Geomertrically-exact, intrinsic theory for dynamics of curved and twisted, anisotropic beams. AIAA J 41(6):1131–1137

    Article  Google Scholar 

  • Hodges DH 2006 Nonlinear composite beam theory.AIAA, Reston, VA

    Google Scholar 

  • Hodges DH, Patil MJ, Chae S 2002 Effect of thrust on bending-torsion flutter of wings. J Aircraft 39(2):371–376

    Article  Google Scholar 

  • Hodges DH, Shang X, Cesnik CES 1996 Finite element solution of nonlinear intrinsic equations for curved composite beams. J Am Helicopter Soc 41(4):313–321

    Article  Google Scholar 

  • Hughes TJR 1987 The finite element method – linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs, NJ, USA

    MATH  Google Scholar 

  • Leamy MJ 2007 Bulk dynamic response modeling of carbon nanotubes using an intrinsic finite element formulation incorporating interatomic potentials. Int J Solids Struct 44(3–4):874–894

    Article  Google Scholar 

  • Leamy MJ 2010 Intrinsic finite element modeling of nonlinear dynamic response in helical springs. In: Proceedings of the ASME 2010 international mechanical engineering congress and exposition, Paper No. IMECE2010-37434, Vancouver, British Columbia, Canada, 12–18 November 2010

    Google Scholar 

  • Leamy MJ, Lee C-Y 2009 Dynamic response of intrinsic continua for use in biological and molecular modeling: explicit finite element formulation. Int J Numer Methods Eng 80(9):1171–1195

    Article  Google Scholar 

  • Lee J, Thompson D 2001 Dynamic stiffness formulation, free vibration and wave motion of helical springs. J Sound Vibration 239(2):297–320

    Article  Google Scholar 

  • Lee J 2007 Free vibration analysis of cylindrical helical springs by the pseudospectral method. J Sound Vibration 302(1–2):185–196

    Article  Google Scholar 

  • Nayfeh AH, Mook DT 1979 Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  • Patil MJ, Hodges DH, Cesnik CES 1999 Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. In: Proceeding of the 40th structures, structural dynamics and material conference, AIAA Paper 99-1470, Saint Louis, Missouri, 12–15 April 1999, pp 2224–2232

    Google Scholar 

  • Patil MJ, Hodges DH, Cesnik CES 2000 Nonlinear aeroelastic analysis of complete aircraft in subsonic flow. J Aircraft 37(5):753–760

    Article  Google Scholar 

  • Peter JFH 1999 Carbon nanotubes and related structures. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Shang X, Hodges DH, Peters DA 1999 Aeroelastic stability of composite hingeless rotors in hover with finite-state unsteady aerodynamics. J Am Helicopter Soc 44(3):206–221

    Article  Google Scholar 

  • Yu WB, Hodges DH 2004 Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. J Appl Mech Trans ASME 71(1):15–23

    Article  Google Scholar 

  • Zhang P, Jiang H, Huang Y, Geubelle PH, Hwang KC 2004 An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation. J Mech Phys Solids 52:977–998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Leamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leamy, M.J. (2012). Nonlinear Dynamic Modeling of Nano and Macroscale Systems. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1469-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1469-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1468-1

  • Online ISBN: 978-1-4614-1469-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics