Skip to main content

Regulation of Tumor Cell Dormancy by Tissue Microenvironments and Autophagy

  • Chapter
  • First Online:
Systems Biology of Tumor Dormancy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 734))

Abstract

The development of metastasis is the major cause of death in cancer patients. In certain instances, this occurs shortly after primary tumor detection and treatment, indicating these lesions were already expanding at the moment of diagnosis or initiated exponential growth shortly after. However, in many types of cancer, patients succumb to metastatic disease years and sometimes decades after being treated for a primary tumor. This has led to the notion that in these patients residual disease may remain in a dormant state. Tumor cell dormancy is a poorly understood phase of cancer progression and only recently have its underlying molecular mechanisms started to be revealed. Important questions that remain to be elucidated include not only which mechanisms prevent residual disease from proliferating but also which mechanisms critically maintain the long-term survival of these disseminated residual cells. Herein, we review recent evidence in support of genetic and epigenetic mechanisms driving dormancy. We also explore how therapy may cause the onset of dormancy in the surviving fraction of cells after treatment and how autophagy may be a mechanism that maintains the residual cells that are viable for prolonged periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  PubMed  CAS  Google Scholar 

  2. Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49

    Article  PubMed  CAS  Google Scholar 

  3. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    Article  PubMed  CAS  Google Scholar 

  4. Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844

    Article  PubMed  CAS  Google Scholar 

  5. Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115:325–336

    Article  PubMed  CAS  Google Scholar 

  6. Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44(18):2721–2725

    Article  PubMed  CAS  Google Scholar 

  7. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456

    Article  PubMed  CAS  Google Scholar 

  8. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453

    Article  PubMed  CAS  Google Scholar 

  9. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  Google Scholar 

  10. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:227–239

    Article  PubMed  CAS  Google Scholar 

  11. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742

    Article  PubMed  CAS  Google Scholar 

  12. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  PubMed  CAS  Google Scholar 

  13. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56

    Article  PubMed  Google Scholar 

  14. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120:2030–2039

    Article  PubMed  CAS  Google Scholar 

  15. Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10:33–44

    Article  PubMed  CAS  Google Scholar 

  16. Klein CA, Hölzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5(16):1788–1798

    Article  PubMed  CAS  Google Scholar 

  17. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Rodrigues M, Dieras V, Mignot L et al (2008) Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis 25:871–875

    Article  PubMed  CAS  Google Scholar 

  18. Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552

    Article  PubMed  CAS  Google Scholar 

  19. Kitzis A, Brizard F, Dascalescu C, Chomel JC, Guilhot F, Brizard A (2001) Persistence of transcriptionally silent BCR-ABL rearrangements in chronic myeloid leukemia patients in sustained complete cytogenetic remission. Leuk Lymphoma 42:933–944

    Article  PubMed  CAS  Google Scholar 

  20. Talpaz M, Estrov Z, Kantarjian H, Ku S, Foteh A, Kurzroc R (1994) Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest 94:1383–1389

    Article  PubMed  CAS  Google Scholar 

  21. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908

    Article  PubMed  CAS  Google Scholar 

  22. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  24. Hickson JA, Huo D, Vander Griend DJ, Lin A, Rinker-Schaeffer CW, Yamada SD (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270

    Article  PubMed  CAS  Google Scholar 

  25. Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73

    Article  PubMed  Google Scholar 

  26. Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672

    Article  PubMed  CAS  Google Scholar 

  27. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al (2009) A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98

    Article  PubMed  CAS  Google Scholar 

  28. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104

    Article  PubMed  CAS  Google Scholar 

  29. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS et al (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70:5706–5716

    Article  PubMed  CAS  Google Scholar 

  30. Ranganathan AC, Ojha S, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2008) Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res 68:3260–3268

    Article  PubMed  CAS  Google Scholar 

  31. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66: 1702–1711

    Article  PubMed  CAS  Google Scholar 

  32. Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5(16):1799–1807

    Article  PubMed  CAS  Google Scholar 

  33. Harrison LB, Sessions RB, Ki-Hong W (2003) Head and neck cancer. A multidisciplinary approach, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  34. Gath HJ, Brakenhoff RH (1999) Minimal residual disease in head and neck cancer. Cancer Metastasis Rev 18:109–126

    Article  PubMed  CAS  Google Scholar 

  35. Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumour dormancy. APMIS 116:754–770

    Article  PubMed  CAS  Google Scholar 

  36. Fan X, Valdimarsdottir G, Larsson J, Brun A, Magnusson M, Jacobsen SE et al (2002) Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J Immunol 168:755–762

    PubMed  CAS  Google Scholar 

  37. Fortunel N, Hatzfeld J, Kisselev S, Monier MN, Ducos K, Cardoso A et al (2000) Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-beta type II receptor in a short-term in vitro assay. Stem Cells 18:102–111

    Article  PubMed  CAS  Google Scholar 

  38. Scandura JM, Boccuni P, Massague J, Nimer SD (2004) Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 101:15231–15236

    Article  PubMed  CAS  Google Scholar 

  39. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256

    Article  PubMed  CAS  Google Scholar 

  40. Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011

    Article  PubMed  CAS  Google Scholar 

  41. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  42. Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3:531–536

    Article  PubMed  CAS  Google Scholar 

  43. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  PubMed  CAS  Google Scholar 

  44. Hideshima T, Podar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524

    Article  PubMed  CAS  Google Scholar 

  45. Javelaud D, Alexaki VI, Mauviel A (2008) Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res 21:123–132

    Article  PubMed  CAS  Google Scholar 

  46. Hussein MR (2005) Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J Cutan Pathol 32:389–395

    Article  PubMed  Google Scholar 

  47. Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D (2005) Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev 24:251–263

    Article  PubMed  CAS  Google Scholar 

  48. Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res 61:8074–8078

    PubMed  CAS  Google Scholar 

  49. Zapas JL, Coley HC, Beam SL, Brown SD, Jablonski KA, Elias EG (2003) The risk of regional lymph node metastases in patients with melanoma less than 1.0 mm thick: recommendations for sentinel lymph node biopsy. J Am Coll Surg 197:403–407

    Article  PubMed  Google Scholar 

  50. Gamel JW, George SL, Edwards MJ, Seigler HF (2002) The long-term clinical course of patients with cutaneous melanoma. Cancer 95:1286–1293

    Article  PubMed  Google Scholar 

  51. Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T (2000) Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology 107:1443–1449

    Article  PubMed  CAS  Google Scholar 

  52. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345

    Article  PubMed  CAS  Google Scholar 

  53. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695

    PubMed  CAS  Google Scholar 

  54. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879

    PubMed  CAS  Google Scholar 

  55. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    Article  PubMed  CAS  Google Scholar 

  56. Aguirre Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21:2513–2524

    Article  PubMed  Google Scholar 

  57. Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524

    Article  PubMed  CAS  Google Scholar 

  58. Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA (2006) Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5:729–735

    Article  PubMed  CAS  Google Scholar 

  59. Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740

    Article  PubMed  CAS  Google Scholar 

  60. Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779

    Article  PubMed  CAS  Google Scholar 

  61. Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    Article  PubMed  CAS  Google Scholar 

  62. Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J (2002) TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12:1448–1461

    Article  PubMed  CAS  Google Scholar 

  63. Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  PubMed  CAS  Google Scholar 

  64. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  65. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  66. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  PubMed  CAS  Google Scholar 

  67. Roy S, Debnath J (2010) Autophagy and tumorigenesis. Semin Immunopathol 32:383–396

    Article  PubMed  Google Scholar 

  68. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed  CAS  Google Scholar 

  69. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  70. Melendez A, Talloczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  CAS  Google Scholar 

  71. Korah R, Boots M, Wieder R (2004) Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res 64:4514–4522

    Article  PubMed  CAS  Google Scholar 

  72. White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6:159–170

    Article  PubMed  CAS  Google Scholar 

  73. Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19:797–806

    Article  PubMed  CAS  Google Scholar 

  74. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78

    Article  PubMed  CAS  Google Scholar 

  75. Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM et al (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677

    Article  PubMed  CAS  Google Scholar 

  76. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685

    Article  PubMed  CAS  Google Scholar 

  77. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917–3929

    PubMed  CAS  Google Scholar 

  78. Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D et al (2010) Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci USA 107:14333–14338

    Article  PubMed  CAS  Google Scholar 

  79. Rubin BP, Debnath J (2010) Therapeutic implications of autophagy-mediated cell survival in gastrointestinal stromal tumor after treatment with imatinib mesylate. Autophagy 6: 1190–1191

    Article  PubMed  CAS  Google Scholar 

  80. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Samuel Waxman Cancer Research Foundation Tumor Dormancy Program, NIH/National Cancer Institute (CA109182, CA163131), NIEHS (ES017146), and NYSTEM to J.A.A-G, DoD Breast Cancer Postdoctoral Fellowship to M.S.S. and NIH RO1 CA126792, CA126792-S1 (ARRA), and a DOD BCRP Era of Hope Scholar Award (W81XWH-11-1-0310) to J.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Aguirre-Ghiso PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sosa, M.S., Bragado, P., Debnath, J., Aguirre-Ghiso, J.A. (2013). Regulation of Tumor Cell Dormancy by Tissue Microenvironments and Autophagy. In: Enderling, H., Almog, N., Hlatky, L. (eds) Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, vol 734. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1445-2_5

Download citation

Publish with us

Policies and ethics