Skip to main content

Cancer Stem Cells and Tumor Dormancy

  • Chapter
  • First Online:
Systems Biology of Tumor Dormancy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 734))

Abstract

The cancer stem cell hypothesis postulates that only a subpopulation of cancer cells in a tumor is capable of initiating, sustaining, and reinitiating tumors, while the bulk of the population comprises non-stem cancer cells that lack tumor initiation potential. The interactions of these two phenotypically distinct populations can provoke various nonlinear growth kinetics in the emerging tumor. An environmentally independent, intrinsic dormant state is an inevitable early tumor progression bottleneck within a range of biologically realistic cell kinetic parameters. In certain conditions, cell kinetics can combine to enable escape to tumor progression, yielding morphologically distinct self-metastatic expansion of multiple self-limiting tumor clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  2. Withers HR, Taylor JM, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27(2):131–146

    Article  PubMed  CAS  Google Scholar 

  3. Hanin L (2011) Why victory in the war on cancer remains elusive: biomedical hypotheses and mathematical models. Cancers 3(1):340–367

    Article  Google Scholar 

  4. Bese NS, Hendry J, Jeremic B (2007) Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int J Radiat Oncol Biol Phys 68(3):654–661

    Article  PubMed  Google Scholar 

  5. Kummermehr JC (2001) Tumour stem cells—the evidence and the ambiguity. Acta Oncol 40(8):981–988

    Article  PubMed  CAS  Google Scholar 

  6. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  7. Allan AL, Vantyghem SA, Tuck AB, Chambers AF (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98

    PubMed  CAS  Google Scholar 

  8. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5(11):899–904

    Article  PubMed  CAS  Google Scholar 

  9. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  10. Hill RP (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66(4):1891–1896

    Article  PubMed  CAS  Google Scholar 

  11. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  12. Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16(12):3106–3112

    Article  PubMed  CAS  Google Scholar 

  13. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66(4):1883–1890, discussion 1895–1896

    Article  PubMed  CAS  Google Scholar 

  14. Solé RV, Rodríguez-Caso C, Deisboeck TS, Saldaña J (2008) Cancer stem cells as the engine of unstable tumor progression. J Theor Biol 253(4):629–637

    Article  PubMed  Google Scholar 

  15. Enderling H, Anderson ARA, Chaplain MAJ, Beheshti A, Hlatky L, Hahnfeldt P (2009) Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res 69(22):8814–8821

    Article  PubMed  CAS  Google Scholar 

  16. Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69(3):836–844

    Article  PubMed  CAS  Google Scholar 

  17. Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328(17):1237–1243

    Article  PubMed  CAS  Google Scholar 

  18. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427(6977):787

    Article  PubMed  CAS  Google Scholar 

  19. Weinberg R (2008) The many faces of tumor dormancy. APMIS 116:548–551

    PubMed  Google Scholar 

  20. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Bäsecke J, Libra M et al (2009) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 23(1):25–42

    Article  PubMed  CAS  Google Scholar 

  21. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  22. Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G (2008) Isolation and culture of colon cancer stem cells. Methods Cell Biol 86:311–324

    Article  PubMed  CAS  Google Scholar 

  23. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  24. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98(4):756–765

    Article  PubMed  CAS  Google Scholar 

  25. Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584(17):3819–3825

    Article  PubMed  CAS  Google Scholar 

  26. Anderson ARA, Chaplain MAJ, Rejniak KA (2009) Single-cell-based models in biology and medicine. Birkhauser Basel, Boston, Berlin, p 1–355

    Google Scholar 

  27. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA 99(suppl 3):7280–7287

    Article  PubMed  CAS  Google Scholar 

  28. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhäuser, Boston

    Google Scholar 

  29. Alison MR, Lovell MJ, Direkze NC, Wright NA, Poulsom R (2006) Stem cell plasticity and tumour formation. Eur J Cancer 42(9):1247–1256

    Article  PubMed  CAS  Google Scholar 

  30. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644

    Article  PubMed  CAS  Google Scholar 

  31. Leder K, Holland EC, Michor F (2010) The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One 5(12):e14366

    Article  PubMed  Google Scholar 

  32. Luo G, Long J, Zhang B, Liu C, Xu J, Yu X et al (2010) Developmental plasticity of stem cells and diseases. Med Hypotheses 75(6):507–510

    Article  PubMed  Google Scholar 

  33. Rapp UR, Ceteci F, Schreck R (2008) Oncogene-induced plasticity and cancer stem cells. Cell Cycle 7(1):45–51

    Article  PubMed  CAS  Google Scholar 

  34. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  35. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  36. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53

    Article  PubMed  CAS  Google Scholar 

  37. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413

    Article  PubMed  CAS  Google Scholar 

  38. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190

    Article  PubMed  CAS  Google Scholar 

  39. Morton CI, Hlatky L, Hahnfeldt P, Enderling H (2011) Non-stem cancer cell kinetics modulate solid tumor progression. Theor Biol Med Model 8(1):48

    Article  PubMed  CAS  Google Scholar 

  40. Robinson EJH, Ratnieks FLW, Holcombe M (2008) An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. J Theor Biol 255(2):250–258

    Article  PubMed  CAS  Google Scholar 

  41. Mukhopadhyay R, Costes SV, Bazarov AV, Hines WC, Barcellos-Hoff MH, Yaswen P (2010) Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies. Breast Cancer Res 12(1):R11

    Article  PubMed  Google Scholar 

  42. Qutub AA, Popel AS (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol 3:13

    Article  PubMed  Google Scholar 

  43. Setty Y, Cohen IR, Dor Y, Harel D (2008) Four-dimensional realistic modeling of pancreatic organogenesis. Proc Natl Acad Sci USA 105(51):20374–20379

    Article  PubMed  CAS  Google Scholar 

  44. Tang J, Enderling H, Becker-Weimann S, Pham C, Polyzos A, Chen C-Y et al (2011) Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling. Integr Biol (Camb) 3(4):408–421

    Article  Google Scholar 

  45. Alarcon T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  PubMed  CAS  Google Scholar 

  46. Anderson ARA, Rejniak KA, Gerlee P, Quaranta V (2009) Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol 58(4–5):579–624

    Article  PubMed  Google Scholar 

  47. Basanta D, Simon M, Hatzikirou H, Deutsch A (2008) Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion. Cell Prolif 41(6):980–987

    Article  PubMed  CAS  Google Scholar 

  48. Enderling H, Alexander NR, Clark ES, Branch KM, Estrada L, Crooke C et al (2008) Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys J 95(5):2203–2218

    Article  PubMed  CAS  Google Scholar 

  49. Gerlee P, Anderson ARA (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246(4):583–603

    Article  PubMed  CAS  Google Scholar 

  50. Piotrowska MJ, Angus SD (2009) A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J Theor Biol 258(2):165–178

    Article  PubMed  Google Scholar 

  51. Rejniak KA, Anderson ARA (2008) A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol 70(3):677–712

    Article  PubMed  Google Scholar 

  52. Wang Z, Zhang L, Sagotsky JA, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 4(1):50

    Article  PubMed  CAS  Google Scholar 

  53. Power C (2009) A spatial agent-based model of N-Person Prisoner’s dilemma cooperation in a socio-geographic community. J Artif Soc Soc 12. http://jasss.soc.surrey.ac.uk/12/1/8/citation.html

  54. Brú A, Albertos S, Luis Subiza J, García-Asenjo JL, Brú I (2003) The universal dynamics of tumor growth. Biophys J 85(5):2948–2961

    Article  PubMed  Google Scholar 

  55. Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture-a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58(1–2):261–283

    Article  PubMed  CAS  Google Scholar 

  56. Norton L (2008) Cancer stem cells, self-seeding, and decremented exponential growth: theoretical and clinical implications. Breast Dis 29:27–36

    PubMed  Google Scholar 

  57. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59:4770–4775

    PubMed  CAS  Google Scholar 

  58. Norton L (2005) Conceptual and practical implications of breast tissue geometry: toward a more effective, less toxic therapy. Oncologist 10(6):370–381

    Article  PubMed  CAS  Google Scholar 

  59. Welch HG, Black WC (2010) Overdiagnosis in cancer. J Natl Cancer Inst 102(9):605–613

    Article  PubMed  Google Scholar 

  60. Yamamoto K, Hanada R, Kikuchi A, Ichikawa M (1998) Spontaneous regression of localized neuroblastoma detected by mass screening. J Clin Oncol 16:1265–1269

    PubMed  CAS  Google Scholar 

  61. Zahl P-H, Maehlen J, Welch HG (2008) The natural history of invasive breast cancers detected by screening mammography. Arch Intern Med 168(21):2311–2316

    Article  PubMed  Google Scholar 

  62. Bernard S, Bélair J, Mackey M (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223:283–298

    Article  PubMed  Google Scholar 

  63. Potten CS, Booth C, Hargreaves D (2003) The small intestine as a model for evaluating adult tissue stem cell drug targets. Cell Prolif 36(3):115–129

    Article  PubMed  CAS  Google Scholar 

  64. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168

    PubMed  CAS  Google Scholar 

  65. Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  66. Naumov GN, Bender E, Zurakowski D, Kang S-Y, Sampson D, Flynn E et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325

    Article  PubMed  Google Scholar 

  67. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  PubMed  CAS  Google Scholar 

  68. Prehn RT (1991) The inhibition of tumor growth by tumor mass. Cancer Res 51(1):2–4

    PubMed  CAS  Google Scholar 

  69. Enderling H, Hlatky L, Hahnfeldt P (2009) Migration rules: tumours are conglomerates of self-metastases. Br J Cancer 100(12):1917–1925

    Article  PubMed  CAS  Google Scholar 

  70. Enderling H, Hlatky L, Hahnfeldt P (2010) Tumor morphological evolution: directed migration and gain and loss of the self-metastatic phenotype. Biol Direct 5:23

    Article  PubMed  Google Scholar 

  71. Enderling H, Park D, Hlatky L, Hahnfeldt P (2009) The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Math Model Nat Phenom 4(3):117–133

    Article  Google Scholar 

  72. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549

    Article  PubMed  CAS  Google Scholar 

  73. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138(4):745–753

    Article  PubMed  CAS  Google Scholar 

  74. Basanta D, Hatzikirou H, Deutsch A (2008) Studying the emergence of invasiveness in tumours using game theory. Eur Phys J B 63(3):393–397

    Article  CAS  Google Scholar 

  75. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11(7):503–511

    Article  PubMed  CAS  Google Scholar 

  76. Roberts SA, Hendry JH (1993) The delay before onset of accelerated tumour cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a collection of worldwide tumour-control data. Radiother Oncol 29(1):69–74

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt-Ullrich RK, Contessa JN, Dent P, Mikkelsen RB, Valerie K, Reardon DB et al (1999) Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Investig 7(6):321–330

    Article  PubMed  CAS  Google Scholar 

  78. Enderling H, Chaplain MAJ, Hahnfeldt P (2010) Quantitative modeling of tumor dynamics and radiotherapy. Acta Biotheor 58(4):341–353

    Article  PubMed  Google Scholar 

  79. Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459(7246):508–509

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the AACR Centennial Postdoctoral Fellowship in Cancer Research 08-40-02-ENDE and the National Cancer Institute under Award Number U54CA149233 (to L. Hlatky). The content is solely the responsibility of the author and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

I would like to thank Lynn Hlatky and Philip Hahnfeldt for their mentorship, vision, and contribution to the work discussed and reviewed in this chapter. I would also like to thank Jan Poleszczuk for help with Fig. 4.7, and Charles Morton for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Enderling PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Enderling, H. (2013). Cancer Stem Cells and Tumor Dormancy. In: Enderling, H., Almog, N., Hlatky, L. (eds) Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, vol 734. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1445-2_4

Download citation

Publish with us

Policies and ethics