Logical Time @ Work: Capturing Data Dependencies and Platform Constraints

  • Calin Glitia
  • Julien DeAntoni
  • Frédéric Mallet
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 106)


Data-flow models are convenient to represent signal processing systems. They precisely reflect the data-dependencies and numerous algorithms exist to compute a static schedule that optimizes a given criterion especially for parallel implementations. Once deployed the data-flow models must be refined with constraints imposed by the environment and the execution platform. In this paper, we show how we can model data dependencies supported by multi-dimensional synchronous data flow with logical time and extend these data dependencies with additional logical constraints imposed by the environment. Making explicit these external constraints allows the exploration of further solutions during the scheduling computation.


  1. 1.
    André, C.: Syntax and Semantics of the Clock Constraint Specification Language (CCSL). Research Report RR-6925, INRIA (2009). URL
  2. 2.
    Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with events and relations: the SIGNAL language and its semantics. Sci. Comput. Program. 16(2), 103–149 (1991)CrossRefMATHGoogle Scholar
  3. 3.
    Berry, G.: The foundations of Esterel. Proof, Language and Interaction: Essays in Honour of Robin Milner pp. 425–454 (2000)Google Scholar
  4. 4.
    Boussinot, F., De Simone, R.: The ESTEREL language. Proceedings of the IEEE 79(9), 1293–1304 (2002)CrossRefGoogle Scholar
  5. 5.
    Chen, M.J., Lee, E.A.: Design and implementation of a multidimensional synchronous dataflow environment. In: Proc. IEEE Asilomar Conf. on Signal, Systems, and Computers (1995)Google Scholar
  6. 6.
    Dumont, P., Boulet, P.: Another multidimensional synchronous dataflow: Simulating Array-OL in ptolemy II. Research report RR-5516, INRIA (2005). URL
  7. 7.
    Fidge, C.: Logical time in distributed computing systems. Computer 24(8), 28–33 (2002)CrossRefGoogle Scholar
  8. 8.
    Glitia, C., Dumont, P., Boulet, P.: Array-ol with delays, a domain specific specification language for multidimensional intensive signal processing. Multidimensional Systems and Signal Processing 21(2), 105–131 (2009). DOI 10.1007/s11045-009-0085-4CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kahn, G.: The semantics of a simple language for parallel programming. Information Processing pp. 471–475 (1974)Google Scholar
  10. 10.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21(7), 558–565 (1978)CrossRefMATHGoogle Scholar
  11. 11.
    Lee, E.A.: Mulitdimensional streams rooted in dataflow. In: M. Cosnard, K. Ebcioglu, J.L. Gaudiot (eds.) Architectures and Compilation Techniques for Fine and Medium Grain Parallelism, IFIP Transactions, vol. A-23, pp. 295–306. North-Holland (1993)Google Scholar
  12. 12.
    Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Computers 36(1), 24–35 (1987)CrossRefMATHGoogle Scholar
  13. 13.
    Lee, E.A., Messerschmitt, D.G.: Synchronous Data Flow. Proc. of the IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  14. 14.
    Mallet, F., DeAntoni, J., André, C., de Simone, R.: The clock constraint specification language for building timed causality models. Innovations in Systems and Software Engineering 6(1–2), 99–106 (2010)CrossRefGoogle Scholar
  15. 15.
    OMG: UML Profile for MARTE, v1.0. Object Management Group (2009). Document number: formal/09-11-02Google Scholar
  16. 16.
    Projet INRIA AOSTE: TimeSquare, logical time matters.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Calin Glitia
    • 1
  • Julien DeAntoni
    • 2
  • Frédéric Mallet
    • 2
  1. 1.INRIA Sophia Antipolis Méditerranée, Team-project AOSTE, I3S/INRIASophia AntipolisFrance
  2. 2.Université de Nice Sophia Antipolis, Team-project AOSTE, I3S/INRIASophia AntipolisFrance

Personalised recommendations