Morphological and Functional Development of the Auditory Nervous System

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 42)


There are three essential aspects to consider in the description of human auditory maturation, namely, the structural, the functional and the behavioral. Structural aspects were studied by histological methods, and in living persons by neuroimaging methods and auditory evoked potentials or magnetic fields.

Discrimination, as a behavioral process, is the ability to recognize the differences between auditory stimuli, and involves two subsystems: Analysis of the physical parameters of the stimulus is performed by the brainstem. Attention to and awareness of the stimulus is mediated by the RAS (and later thalamic) input into the layer I system. Discriminative ability and both subsystems are operational in the months before and after term birth. Perception and cortical connections begin to develop slowly in the second half of the first year of life, and continue into late childhood/teen/adult years. This phase is characterized by maturation of thalmocortical input. Maturational time constants increase stepwise from the periphery (4 weeks), via brainstem (6 month) to the thalamo-cortical system (6 years), and correspond well with behavioral indices of sensory discrimination and perception. Three pathways to the auditory cortex can be distinguished and appear to mature along very different timelines. The ones that mature early, i.e., the reticular activating system pathway and the extralemniscal, non-tonotopically organized, pathway, are generally adult-like at the end of the maturation of the neural discrimination system, i.e., by 1.5–2 years of age. The lemniscal, tonotopically-organized, pathway appears the slowest to mature, well into the late teens or early twenties, and correlates with the maturation of the perceptual system.


Fractional Anisotropy Brain Stem Auditory Cortex Cochlear Implant Inferior Colliculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Alberta Heritage Foundation for Medical Research, and by the Campbell McLaurin Chair for Hearing Deficiencies.


  1. Aitkin, L. M., Kudo, M., & Irvine, D. R. F. (1988). Connections of the primary auditory cortex in the common marmoset, Calithrix jacchus jachhus. Journal of Comparative Neurology 269, 235–248.PubMedGoogle Scholar
  2. Albrecht, R., Suchodoletz, W., & Uwer, R. (2000). The development of auditory evoked dipole source activity from childhood to adulthood. Clinical Neurophysiology 111, 2268–2276.PubMedGoogle Scholar
  3. Anderson, A. W., Marois, R., Colson, E. R, Peterson, B. S., Duncan, C. C., Ehrenkranz, R. A., Schneider, K. C., Gore, J. C., & Ment, L. R. (2001). Neonatal auditory activation detected by functional magnetic resonance imaging. Magnetic Resonance Imaging, 19,1–5.PubMedGoogle Scholar
  4. Barnet, A. B., Ohlrich, E. S., Weiss, I. P., & Shanks, B. (1975). Auditory evoked potentials during sleep in normal children from ten days to three years of age. Electroencephalography and Clinical Neurophysiology, 39, 29–41.PubMedGoogle Scholar
  5. Beaulieu, C., & Colonnier, M. (1985). A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurology, 231, 180–189.PubMedGoogle Scholar
  6. Bishop, D. V., Hardiman, M., Uwer, R., & von Suchodoletz, W. (2007). Maturation of the long-latency auditory ERP: Step function changes at start and end of adolescence. Developmental Science, 10, 565–575.PubMedGoogle Scholar
  7. Brodmann, K. (1908). Beitrage zuer hostologishen Lokalization der Grosshirnrinde: VI Mitteilung: Die Cortexgliederung der Menschen. Journal of Psychiatry and Neurology, 10, 231–246.Google Scholar
  8. Bruneau, N., Roux, S., Guerin, P., Barthelemy, C., & Lelord, G. (1997). Temporal prominence of auditory evoked potentials (N1 wave) in 4–8-year-old children. Psychophysiology, 34, 32–38.PubMedGoogle Scholar
  9. Bürgel, U., Amunts, K., Hoemke, L., Mohlberg, H., Gilsbach, J. M., & Zilles, K. (2006). White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage, 29,1092–1105.PubMedGoogle Scholar
  10. Burton, H., & Jones, E. G. (1975). The posterior thalamic region and its cortical projection in New World and Old World monkeys. Journal of Comparative Neurology, 168, 249–302.Google Scholar
  11. Cauller, L. J., & Connors, B. W. (1994). Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. The Journal of Neuroscience, 14, 751–762.PubMedGoogle Scholar
  12. Ceponiené, R., Rinne, T., & Näätänen, R. (2002). Maturation of cortical sound processing as indexed by event-related potentials. Clinical Neurophysiology, 113, 870–882.PubMedGoogle Scholar
  13. Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage, 41, 623–635.PubMedGoogle Scholar
  14. Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S., & Press, G. A. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672–682.PubMedGoogle Scholar
  15. Dehaene-Lambertz, G., & Gliga, T. (2004). Common neural basis for phoneme processing in infants and adults. Journal of Cognitive Neuroscience, 16, 1375–1387.PubMedGoogle Scholar
  16. Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298, 2013–2015.PubMedGoogle Scholar
  17. de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connection of the auditory cortex in marmoset monkeys: Core and medial belt regions. Journal of Comparative Neurology, 496, 72–96.PubMedGoogle Scholar
  18. del Rio, J. A., Martinez, A., Fonseca, M., Auladell, C., & Soriano, E. (1995). Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified by calretinin antibody. Cerebral Cortex, 1, 13–21.Google Scholar
  19. Devous, M. D. Sr., Altuna, D., Furl, N., Cooper, W., Gabbert, G., Ngai, W. T., Chiu, S., Scott, J. M. 3 rd, Harris, T. S., Payne, J. K., & Tobey, E. A. (2006). Maturation of speech and language functional neuroanatomy in pediatric normal controls. Journal of Speech Language and Hearing Research, 49, 856–866.Google Scholar
  20. Draganova, R., Eswaran, H., Murphy, P., Huotilainen, M., Lowery, C., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. NeuroImage, 28, 354–361.PubMedGoogle Scholar
  21. Draganova, R., Eswaran, H., Murphy, P., Lowery, C., & Preissl, H. (2007). Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Human Development, 83, 199–207.PubMedGoogle Scholar
  22. Eggermont, J. J. (1988). On the rate of maturation of sensory evoked potentials. Electroencephalo-graphy and Clinical Neurophysiology, 70, 293–305.PubMedGoogle Scholar
  23. Eggermont, J. J. (2006). Electric and magnetic fields of synchronous neural activity propagated to the surface of the head: Peripheral and central origins of AEPs. In R. R. Burkard, M. Don, & J. J. Eggermont (Eds.), Auditory evoked potentials (pp. 2–21) Baltimore: Lippincott Williams & Wilkins.Google Scholar
  24. Eggermont, J. J., & Ponton, C. W. (2002). The neurophysiology of auditory perception: From single-units to evoked potentials. Audiology & Neuro-Otology, 7, 71–99.Google Scholar
  25. Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123, 249–252.PubMedGoogle Scholar
  26. Eggermont, J. J., & Salamy, A. (1988). Maturational time course for the ABR in preterm and full term infants. Hearing Research, 33, 35–47.PubMedGoogle Scholar
  27. Eggermont, J. J., Ponton, C. W., Coupland, S. G., & Winkelaar, R. (1991). Maturation of the traveling-wave delay in the human cochlea. Journal of the Acoustical Society of America, 90, 288–298.PubMedGoogle Scholar
  28. Eggermont, J. J., Brown, D. K., Ponton, C. W., & Kimberley, B. P. (1996). Comparison of distortion product otoacoustic emission (DPOAE) and auditory brain stem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation. Ear & Hearing, 17, 386–394.Google Scholar
  29. Eisenberg, L. S., Shannon, R. V., Martinez, A. S., Wygonski, J., & Boothroyd, A. (2000). Speech recognition with reduced spectral cues as function of age. Journal of the Acoustical Society of America, 107, 2704–2710.PubMedGoogle Scholar
  30. Elliott, L. L. (1979). Performance of children aged 9–17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. Journal of the Acoustical Society of America, 66, 651–653.PubMedGoogle Scholar
  31. Friederici, A. D., Friedrich, M., & Weber, C. (2002). Neural manifestation of cognitive and precognitive mismatch detection in early infancy. NeuroReport, 13, 1251–1254.PubMedGoogle Scholar
  32. Galaburda, A., & Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190, 597–610.PubMedGoogle Scholar
  33. Gilley, P. M., Sharma, A., Dorman, M., & Martin, K. (2005). Developmental changes in refractoriness of the cortical auditory evoked potential. Clinical Neurophysiology, 116, 648–657.PubMedGoogle Scholar
  34. Gilley, P. M., Sharma, A., & Dorman, M. F. (2008). Cortical reorganization in children with cochlear implants. Brain Research, 1239, 56–65.PubMedGoogle Scholar
  35. Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., & Vaughan, H. G. Jr. (2001). Spatiotemporal maturation of the central and lateral N1 components to tones. Developmental Brain Research, 129, 147–155.PubMedGoogle Scholar
  36. Gomot, M., Giard, M. H., Roux, S., Barthélémy, C., & Bruneau, N. (2000). Maturation of frontal and temporal components of mismatch negativity (MMN) in children. NeuroReport 11, 3109–3012.PubMedGoogle Scholar
  37. Gordon, K. A., Papsin, B. C., & Harrison, R. V. (2005). Effects of cochlear implant use on the electrically evoked middle latency response in children. Hearing Research, 204, 78–89.PubMedGoogle Scholar
  38. Gordon, K. A., Papsin, B. C., & Harrison, R. V. (2006). An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants. Audiology & Neuro-Otology, 11, 7–23.Google Scholar
  39. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998a). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabaelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394, 475–495.PubMedGoogle Scholar
  40. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998b). Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 400, 271–286.PubMedGoogle Scholar
  41. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Callosal connections of the parabelt auditory cortex in macaque monkeys. European Journal of Neuroscience, 11, 856–866.PubMedGoogle Scholar
  42. Hafner, H., Pratt, H., Joachims, Z., Feinsod, M., & Blazer, S. (1991). Development of auditory brainstem evoked potentials in newborn infants: A three-channel Lissajous’s trajectory study. Hearing Research, 51, 33–47.PubMedGoogle Scholar
  43. Harrison, J. B., Woolf, N. J., & Buchwald, J. S. (1990). Cholinergic neurons of the feline pontomesencephalon. I. Essential role in ‘wave A’ generation. Brain Research, 520, 43–54.PubMedGoogle Scholar
  44. Hashikawa, T., Molinari, M., Rausell, E., & Jones, E. G. (1995). Patchy and laminar termination of medial geniculate axons in monkey auditory cortex. Journal of Comparative Neurology, 362, 195–208.PubMedGoogle Scholar
  45. Hashimoto, I., Ishiyama, Y., Yoshimoto, T., & Nemoto, S. (1981). Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain, 104, 841–859.PubMedGoogle Scholar
  46. He, C., Hotson, L., & Trainor, L. J. (2007). Mismatch responses to pitch changes in early infancy. Journal of Cognitive Neuroscience, 19, 878–892.PubMedGoogle Scholar
  47. Hestrin, L., & Armstrong, W. E. (1996). Morhology and physiology of cortical neurons in layer I. The Journal of Neuroscience, 16, 5290–5300.PubMedGoogle Scholar
  48. Hoffman, P. N., Griffin, J. W., & Price, D. L. (1984). Control of axonal caliber by neurofilament transport. Journal of Cell Biology, 99, 705–714.PubMedGoogle Scholar
  49. Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal Neonatal Medicine, 11, 489–497.PubMedGoogle Scholar
  50. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.PubMedGoogle Scholar
  51. Imamoto, K., Karasawa, N., Isomura, G., & Nagatsu, I. (1994). Cajal-Retzius neurons identified by GABA immunohistochemistry in layer I of the rat cerebral cortex. Neuroscience Research, 20, 101–115.Google Scholar
  52. Javitt, D. C., Steinschneider, M., Schroeder, C. E., & Arezzo, J. C. (1996). Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Sciences of the USA, 93, 11962–11967.PubMedGoogle Scholar
  53. Jiang, Z. D., Zheng, M. S., Sun, D. K., & Liu, X. Y. (1991). Brainstem auditory evoked responses from birth to adulthood: Normative data of latency and interval. Hearing Research, 54, 67–74.PubMedGoogle Scholar
  54. Johnson, C. E. (2000). Children’s phoneme identification in reverberation and noise. Journal of Speech Language and Hearing Research, 43, 144–157.Google Scholar
  55. Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. Journal of Neuropathology and Experimental Neurology, 47, 217–234.PubMedGoogle Scholar
  56. Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56, 259–269.PubMedGoogle Scholar
  57. Kraus, N., Smith, D. I., Reed, N. L., Stein, L. K., & Cartee, C. (1985). Auditory middle latency responses in children: Effects of age and diagnostic category. Electroencephalography and Clinical Neurophysiology, 62, 343–351.PubMedGoogle Scholar
  58. Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants 6 months of age. Science, 255, 606–608.PubMedGoogle Scholar
  59. Kushnerenko, E., Ceponiene, R., Balan, P., Fellman, V., Huotilaine, M., & Näätänen, R. (2002). Maturation of the auditory event-related potentials during the first year of life. NeuroReport, 13, 47–51.PubMedGoogle Scholar
  60. Langworthy, O. R. (1933). Development of behavioral patterns and myelinization of the nervous system in the human fetus and infant. Contributions to Embryology (Carnegie Institute of Washington), 24, 1–57.Google Scholar
  61. Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40, 1044–1055.PubMedGoogle Scholar
  62. Lieberman, A., Sohmer, H., & Szabo, G. (1973). Standard values of amplitude and latency of cochlear audiometry (electro-cochleography). Responses in different age groups. Archiven Klinische und Experimentelle Ohren Nasen und Kehlkopfheilkunde, 203, 267–273.Google Scholar
  63. Luethke, L. E., Krubitzer, L. A., & Kaas, J. H. (1989). Connections of primary auditory cortex in the New World monkey, Saguinus. Journal of Comparative Neurology, 285, 487–513.PubMedGoogle Scholar
  64. Lütkenhöner, B., & Steinsträter, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol & Neuro-Otology, 3, 191–213.Google Scholar
  65. Marin-Padilla, M., & Marin-Padilla, T. M. (1982). Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anatomy and Embryology (Berlin), 164, 161–206.Google Scholar
  66. Meyer, G., & Goffinet, A. M. (1998). Prenatal development of reelin-immunoreactive neurons in the human neocortex. Journal of Comparative Neurology, 397, 29–41.PubMedGoogle Scholar
  67. Meyer, G., & González-Hernández, T. (1993). Developmental changes in layer I of the human neocortex during prenatal life: A DiI-tracing, AChE and NADPH-d histochemistry study. Journal of Comparative Neurology, 338, 317–336.PubMedGoogle Scholar
  68. Michalewski, H. J., Starr, A., Nguyen, T. T., Kong, Y. Y., & Zeng, F. G. (2005). Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy. Clinical Neurophysiology, 116, 669–680.PubMedGoogle Scholar
  69. Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.PubMedGoogle Scholar
  70. Mochizuki, Y., Go, T., Ohkubo, H., & Motomura, T. (1983). Development of human brainstem auditory evoked potentials and gender differences from infants to young adults. Progress in Neurobiology, 20, 273–285.PubMedGoogle Scholar
  71. Møller, A. R., Jannetta, P. J., & Sekhar, L. N. (1988). Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): Results of intracranial recording in man. Electroencephalography and Clinical Neurophysiology, 71, 198–211.PubMedGoogle Scholar
  72. Moore, J. K. (2002). Maturation of human auditory cortex: Implications for speech perception. Annals of Otolology Rhinology and Laryngology Supplement, 189, 7–10Google Scholar
  73. Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297–311.PubMedGoogle Scholar
  74. Moore, J. K., & Linthicum, F. H., Jr. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46, 460–478.PubMedGoogle Scholar
  75. Moore, J. K., Perazzo, L. M., & Braun, A. (1995). Time course of axonal myelination in the human brainstem auditory pathway. Hearing Research, 87, 21–31.PubMedGoogle Scholar
  76. Moore, J. K., Ponton, C. W., Eggermont, J. J., Wu, B. J., & Huang, J. Q. (1996). Perinatal maturation of the auditory brain stem response: Changes in path length and conduction velocity. Ear & Hearing, 17, 411–418.Google Scholar
  77. Moore, J. K., Guan, Y. L., & Shi, S. R. (1997). Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry. Anatomy and Embryology (Berlin), 195, 15–30.Google Scholar
  78. Moore, J. K., Guan, Y. L., & Shi, S. R. (1998). MAP2 expression in developing dendrites of human brainstem auditory neurons. Journal of Chemical Neuroanatomy, 16, 1–15.PubMedGoogle Scholar
  79. Mukherjee, P., Miller, J. H., Shimony, J. S., Conturo, T. E., Lee, B. C., Almli, C. R., & McKinstry, R. C. (2001). Normal brain maturation during childhood: Developmental trends characterized with diffusion-tensor MR imaging. Radiology, 221, 349–358.PubMedGoogle Scholar
  80. Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38, 1–21.PubMedGoogle Scholar
  81. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedGoogle Scholar
  82. Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R. J., Luuk, A., Allik, J., Sinkkonen, J., & Alho, K. (1997). Language- specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432–434.PubMedGoogle Scholar
  83. Novak, G. P., Kurtzberg, D., Kreuzer, J. A., & Vaughan, H. G., Jr. (1989). Cortical responses to speech sounds and their formants in normal infants: Maturational sequence and spatiotemporal analysis. Electroencephalography and Clinical Neurophysiology, 73, 295–305.PubMedGoogle Scholar
  84. Ohlrich, E. S., Barnet, A. B., Weiss, I. P., & Shanks, B. L. (1978). Auditory evoked potential development in early childhood: A longitudinal study. Electroencephalography and Clinical Neurophysiology, 44, 411–423.PubMedGoogle Scholar
  85. Paetau, R., Ahonen, A., Salonen, O., & Sams, M. (1995). Auditory evoked magnetic fields to tones and pseudowords in healthy children and adults. Journal of Clinical Neurophysiology, 12, 177–185.PubMedGoogle Scholar
  86. Pandya, D. N., & Rosene, D. L. (1993). Laminar termination patterns of thalamic, callosal and association afferents in the primary auditory area of the rhesus monkey. Experimental Neurology, 119, 220–234.PubMedGoogle Scholar
  87. Pang, E. W., & Taylor, M. J. (2000). Tracking the development of the N1 from age 3 to adulthood: An examination of speech and non-speech stimuli. Clinical Neurophysiology, 111, 388–397.PubMedGoogle Scholar
  88. Pang, E. W., Edmonds, G. E., Desjardins, R., Khan, S. C., Trainor, L. J., & Taylor, M. J. (1998). Mismatch negativity to speech stimuli in 8-month-old infants and adults. International Journal of Psychophysiology, 29, 227–236.PubMedGoogle Scholar
  89. Pasman, J. W., Rotteveel, J. J., de Graaf, R., Maassen, B., & Notermans, S. L. H. (1991). Detectability of auditory response components in preterm infants. Early Human Development, 26, 129–141PubMedGoogle Scholar
  90. Pasman, J. W., Rotteveel, J. J., Maassen, B., & Visco, Y. M. (1999). The maturation of auditory cortical evoked responses between (preterm) birth and 14 years of age. European Journal of Paediatric Neurology, 3, 79–82.PubMedGoogle Scholar
  91. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54, 255–266.PubMedGoogle Scholar
  92. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.PubMedGoogle Scholar
  93. Picton, T. W., & Taylor, M. J. (2007). Electrophysiological evaluation of human brain development. Developmental Neuropsychology, 31, 249–278.PubMedGoogle Scholar
  94. Ponton, C. W., & Eggermont, J. J. (2001). Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiology & Neuro-Otology, 6, 363–380.Google Scholar
  95. Ponton, C. W., & Eggermont, J. J. (2006). Electrophysiological measures of human auditory system maturation: Relationship with neuroanatomy and behavior. In R. R. Burkard, M. Don, & J. J. Eggermont (Eds), Auditory evoked potentials (pp. 385–402) Baltimore: Lippincott Williams & Wilkins.Google Scholar
  96. Ponton, C. W., Eggermont, J. J., Coupland, S. G., & Winkelaar, R. (1992). Frequency-specific maturation of the eighth nerve and brain-stem auditory pathway: Evidence from derived auditory brain-stem responses (ABRs). Journal of the Acoustical Society of America, 91, 1576–1586.PubMedGoogle Scholar
  97. Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., Kwong, B., & Masuda, A. (1996a). Auditory system plasticity in children after long periods of complete deafness. NeuroReport, 8, 61–65.PubMedGoogle Scholar
  98. Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., & Masuda, A. (1996b). Maturation of human cortical auditory function: Differences between normal-hearing children and children with cochlear implants. Ear & Hearing, 17, 430–437.Google Scholar
  99. Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000a). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.PubMedGoogle Scholar
  100. Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., Kwong, B., Cunningham, J., & Trautwein, P. (2000b). Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use. Audiology & Neuro-Otology, 5, 167–185.Google Scholar
  101. Ponton, C. W., Eggermont, J. J., Khosla, D., Kwong, B., & Don, M. (2002). Maturation of human central auditory system activity: Separating auditory evoked potentials by dipole source modeling. Clinical Neurophysiology, 113, 407–420.PubMedGoogle Scholar
  102. Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66, 339–343.PubMedGoogle Scholar
  103. Rauschecker, J. P., Tian, B., Pons, T., & Mishkin, M. (1997). Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology, 382, 89–103.PubMedGoogle Scholar
  104. Ramon y Cajal, S. (1900). Studies on the human cerebral cortex III: Structure of the acoustic cortex. Revista Trimestral Micrografica, 5, 129–183Google Scholar
  105. Rotteveel, J. J., Colon, E. J., Notermans, L. H., Stoelinga, G. B. A., & Visco, Y. M. (1985). The central auditory conduction at term date and three months after birth. I. Composite group averages of brainstem ABR, middle latency (MLR) and auditory cortical responses (ACR). Scandinavian Audiology, 14, 179–186.PubMedGoogle Scholar
  106. Rotteveel, J. J., Stegeman, D. F., de Graaf, R., Colon, E. J., & Visco, Y. M. (1987). The maturation of the central auditory conduction in preterm infants until three months post term. III. The middle latency auditory evoked response (MLR). Hearing Research, 27, 245–256.PubMedGoogle Scholar
  107. Rubel, E. W., Lippe, W. R., & Ryals, B. M. (1984). Development of the place principle. Annals of Otology Rhinology and Laryngology, 93, 609–615.Google Scholar
  108. Sano, M., Kaga, K., Kuan, C. C., Ino, K., & Mima, K. (2007). Early myelination patterns in the brainstem auditory nuclei and pathway: MRI evaluation study. International Journal of Pediatric Otorhinolaryngology, 71, 1105–1115.PubMedGoogle Scholar
  109. Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear & Hearing, 23, 532–539.Google Scholar
  110. Sharma, A, Gilley, P. M., Dorman, M. F., & Baldwin, R. (2007). Deprivation-induced cortical reorganization in children with cochlear implants. International Journal of Audiology, 46, 494–499.PubMedGoogle Scholar
  111. Skinner, J. E., & Yingling, C. D. (1976). Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalography and Clinical Neurophysiology, 40, 288–296.PubMedGoogle Scholar
  112. Spreafico, R., Arcelli, P., Frassoni, C., Canetti, P., Giaccone, G., et al. (1999). Development of layer I of the human cerebral cortex after midgestation: Architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. Journal of Comparative Neurology, 410, 126–142.PubMedGoogle Scholar
  113. Starr, A., Amlie, R. N., Martin, W. H., & Sanders, S. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60, 831–839.PubMedGoogle Scholar
  114. Stegeman, D. F., Van Oosterom, A., & Colon, E. J. (1987). Far-field evoked potential components induced by a propagating generator: Computational evidence. Electroencephalography and Clinical Neurophysiology, 67, 176–187.PubMedGoogle Scholar
  115. Su, P., Kuan, C. C., Kaga, K., Sano, M., & Mima, K. (2008). Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment. International Journal of Pediatric Otorhinolaryngology, 72, 1751–1763.PubMedGoogle Scholar
  116. Thai-Van, H., Cozma, S., Boutitie, F., Disant, F., Truy, E., & Collet, L. (2007). The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clinical Neurophysiology, 118, 676–689.PubMedGoogle Scholar
  117. Tonnquist-Uhlen, I., Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2003). Maturation of human central auditory system activity: The T-complex. Clinical Neurophysiology, 114, 685–701.PubMedGoogle Scholar
  118. Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51, 5–15.PubMedGoogle Scholar
  119. Trehub, S. E. (1976). The discrimination of foreign speech contrasts by infants and adults. Child Development, 47, 466–472.Google Scholar
  120. Trojanowski, J. Q., & Jacobson, S. (1975). A combined horseradish peroxidase autoradiographic investigation of reciprocal connections between superior temporal gyrus and pulvinar in squirrel monkey. Brain Research, 85, 347–353.PubMedGoogle Scholar
  121. Weisshaar, B., Doll, T., & Matus, A. (1992). Reorganisation of the microtubular cyoskeleton by embryonic microtubule-associated protein 2 (MAP2c). Development, 116, 1151–1161.PubMedGoogle Scholar
  122. Weitzman, W. D., & Graziani, L. J. (1968). Maturation and topography of the auditory evoked response of the prematurely born infant. Developmental Psychobiology, 1, 79–89.Google Scholar
  123. Werker, J. F., & Tees, R. S. (1984). Cross language speech perception: Evidence for perceptual organization during the first year of life. Infant Behavioral Development, 7, 49–63.Google Scholar
  124. Winer, J. A., & Larue, D. T. (1989). Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Neuroscience, 33, 499–515.PubMedGoogle Scholar
  125. Xu, Z., Marszalek, J. R., Lee, M. K., Wong, P. C., Folmer, J., Crawford, T. O., Hsieh, S. T., Griffin, J. W., & Cleveland, D. W. (1996). Subunit composition of neurofilaments specifies axonal diameter. Journal of Cell Biology, 133, 1061–1069.PubMedGoogle Scholar
  126. Yakolev, P. L., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell.Google Scholar
  127. Yingling, C. D., & Skinner, J. E. (1976). Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalography and Clinical Neurophysiology, 41, 476–482.PubMedGoogle Scholar
  128. Zeceviç, N., Milosevic, A., Rakic, P., & Marin-Padilla, M. (1999). Early development and composition of the human primordial plexiform layer: An immunohistochemical study. Journal of Comparative Neurology, 412, 241–254.PubMedGoogle Scholar
  129. Zhang, J., Evans, A., Hermoye, L., Lee, S. K., Wakana, S., Zhang, W., Donohue, P., Miller, M. I., Huang, H., Wang, X., van Zijl, P. C., & Mori, S. (2007). Evidence of slow maturation of the superior longitudinal fasciculus in early childhood by diffusion tensor imaging. NeuroImage, 38, 239–247.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physiology and Pharmacology, Department of PsychologyUniversity of CalgaryCalgaryCanada
  2. 2.House Ear InstituteLos AngelesUSA

Personalised recommendations