Descriptive Statistics for Nonparametric Models I. Introduction

  • P. J. Bickel
  • E. L. Lehmann
Open Access
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

An overview is given of an approach to the definition of descriptive characteristics of populations and to their estimation. The emphasis is on the robustness and efficiency of the estimators. Detailed summaries will be found in successive papers of the series dealing with the problems of location, scale and kurtosis.

Key words and Phrases

Descriptive statistics nonparametric models robustness estimation asymptotic efficiency standardize variance location scale kurtosis 

References

  1. Andrews, D. F., Bickel, P.J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. W. (1972). Robust Estimation of Location. Princeton Univ. Press.Google Scholar
  2. Bahadur, Raghu Raj and Savage, Leonard J. (1956). The nonexistence of certain statistical procedures in nonparametric problems. Ann. Math. Statist. 27 1115–1122.MathSciNetMATHCrossRefGoogle Scholar
  3. Barlow, Richard E. and Proschan, Frank (1966). Tolerance and confidence limits for classes of distributions based on failure rates. Ann. Math. Statist. 37 1593–1601.MathSciNetCrossRefGoogle Scholar
  4. Birnbaum, Z. W. (1943). On random variables with comparable peakedness. Ann. Math. Statist. 19 76–81.MathSciNetCrossRefGoogle Scholar
  5. CHISSOM, BRADS. (1970). Interpretation of the kurtosis statistic. Amer. Statist. 24 (4) 19–23.Google Scholar
  6. DANIELL, P. J. (1920). Observations weighted according to order. Amer. J. Math. 42 222336.MathSciNetMATHCrossRefGoogle Scholar
  7. DARLINGTON, R. B. (1970). Is kurtosis really peakedness? Amer. Statist. 24 (2) 19–20.CrossRefGoogle Scholar
  8. ESARY, J. D. and PRoscHAN, F. (1972). Relationships among some concepts of bivariate dependence. Ann. Math. Statist. 43 651–655.Google Scholar
  9. EsARY, J.D., PROSCHAN, F. and WALKUP, D. W. (1967). Association of random variables with applications. Ann. Math. Statist. 38 1466–1474.Google Scholar
  10. HAMPEL, F. R. (1968). Contributions to the theory of robust estimation. Ph. D. Dissertation, Uni v. of California, Berkeley.Google Scholar
  11. HAMPEL, F. R. ( 1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 18871896.MathSciNetMATHCrossRefGoogle Scholar
  12. H 0YLAND, ARNLJOT ( 1965). Robustness of the Hodges- Lehmann estimator for shift. Ann. Math. Statist. 36 174–197.Google Scholar
  13. HuBER, P. J. ( 1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73–101.MathSciNetMATHCrossRefGoogle Scholar
  14. HuBER, P. J. ( 1972). Robust statistics: A review. Ann. Math. Statist. 43 1041–1067.MathSciNetMATHCrossRefGoogle Scholar
  15. LEHMANN, E. L. (1955). Ordered families of distributions. Ann. Math. Statist. 26 399–419.MathSciNetMATHCrossRefGoogle Scholar
  16. LEHMANN, E. L. (1963). Robust estimation in analysis of variance. Ann. Math. Statist. 34 957–966.MathSciNetMATHCrossRefGoogle Scholar
  17. L EHMANN, E. L. (1966). Someconceptsofdependence. Ann. Math. Statist. 3711371153.Google Scholar
  18. MANN, HENRY B. and WHITNEY, D. R. (1947). On tests of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18 5060.Google Scholar
  19. SPJ0TVOLL, EMIL (1968). A note on robust estimation in analysis of variance. Ann. Math. Statis t. 39 1486–1492.Google Scholar
  20. STE IN, CHARL ES (1956). Efficient nonparametric testing and estimation. Proc. Third Berkeley Sy mp. on Math. Stat. and Prob. 187195, Univ. of California Press.Google Scholar
  21. TAKEU CHI, K. ( 1967). Robust estimation and robust parameter. (Unpublished).Google Scholar
  22. TAKEUCHI, K. (1971 ). A uniformly asymptotically efficient estimator of a location parameter. J. Amer. Statist. Assoc. 66 292–301.CrossRefGoogle Scholar
  23. TUKEY, J. W. ( 1960). A survery of sampling from contaminated distributions. Contributions to Probability and Statistics. Ed. I. Olkin, Stanford Univ. Press.Google Scholar
  24. TuKEY, J. W. ( 1962). The future of data analysis. Ann. Math. Statist. 33 1–67.MathSciNetMATHCrossRefGoogle Scholar
  25. VAN EEDEN, C o NSTAN CE (1970). Efficiency- robust estimation of location. Ann. Math. Statist. 41172181.Google Scholar
  26. VAN ZwET, W. R. (1964). Convex transformations of random variables. Math. Centrum, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • P. J. Bickel
    • 1
  • E. L. Lehmann
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations