Skip to main content

Tree Improvement

  • Chapter
  • First Online:
Biotechnology for Pulp and Paper Processing
  • 2235 Accesses

Abstract

Biotechnology is becoming an increasingly important component of the forest industry. Tree genetics offers the possibility to resolve the increased demands on forest resources through the development of trees more tolerant to diseases, pests, and chemicals, which have a detrimental impact on forest health. Phytoremediation is a unique application of genetically altered trees for cost-effective decontamination of toxic pollutants in soil. Phytoremediation depends upon the root uptake of contaminants which are then stored by the tree or degraded to less toxic compounds. Its advantages are that it works in situ using solar or green energy. The technique is less expensive than ex situ techniques; however, a long time factor may be involved there. The potential for phytoremediation includes the removal of naturally occurring selenium in irrigation water and the use of genetically altered Eucalyptus trees to absorb and metabolize air pollutants. However, for phytoremediation to become a viable technology, a more complete understanding of the process is essential. End products must be identified and the mechanism by which toxic materials are converted needs to be elucidated. Biotechnology, as applied to forest trees, is still a new science that requires answers to the numerous questions it continuously unveils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anne SM (1996) Moving forest trees in to the modern genetics era. Science 271(5250):760

    Article  Google Scholar 

  • Anon (1996) The Hazardous Waste Consultant. Phytoremediation Gets to the Root of Soil Contamination, May/June, pp 1.22–1.28

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery 1:81

    CAS  Google Scholar 

  • Bañuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils: a new technology. J Soil Water Conserv 52(6):426–430

    Google Scholar 

  • Bertolucci FLG, Penchel RM, Rezende GDSP, Claudio-da-Silva E (1999) Tree engineering at Aracruz Celulose: results, challenges and perspectives. 27th EUCEPA conference – Crossing the millennium frontier, emerging technical and scientific challenges, Grenoble, France, 11–14 Oct. 1999, pp 33–38

    Google Scholar 

  • Boudet AM (1996). Tree improvement through lignin engineering, Proceedings of the European conference on pulp and paper research: the present and the future, Stockholm, Sweden, 9–11 Oct. 1996, pp 336–349

    Google Scholar 

  • Brunelli E (2008) Genetically modified and cross-bred trees. Ind Carta 46(4):22–25

    Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31(5):1399

    Article  CAS  Google Scholar 

  • Chen C, Baucher M, Christensen JH, Boerjan W (2001) Biotechnology in trees: towards improved paper pulping by lignin engineering. Euphytica 118(2):185–195

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29P:207–212

    Article  Google Scholar 

  • Cyr DR, Binnie S, Grimes S, Klimaszewska K, Finstad K, Loyola I, Percy R, Quan G, Valentine A (1997) From the cradle to the forest: advances in conifer propagation, 1997 Biological sciences symposium, San Francisco, CA, USA, 19–23 Oct. 1997, pp 199–202

    Google Scholar 

  • Dean JFD, Lafayette KE, Eriksson KL, Merkle SA (1997) Forest Tree Biotechnology. Advances in Biochemical Engineering, Vol. 57. Springer, Berlin, p 1

    Google Scholar 

  • Dimmel DR, MacKay JJ, Pullman GS, Althen EM, Sederoff RR (2000) Improving pulp production with raw material changes. 2000 Pulping/process and product quality conference, Boston, MA, USA, 5–8 Nov. 2000, 5pp

    Google Scholar 

  • Eriksson K-EL, LaFayette PR, Merkle SA and Dean JFD (1996). Laccase as a targt for decreasing lignin content in transgenic trees through antisense genetic engineering. In: Srebotnik E, Messner K (eds) Proc. 6th International Conference on Biotechnology in the Pulp and Paper Industry. Facultas-Universitatsverlag, Vienna, pp 310–314

    Google Scholar 

  • Kleiner K, Ellis D, McCown BH, Raffa K (1995) Field evaluation of transgenic poplar against tenr caterpiller and gypsy moth. Environ Entomol 24(5):1358

    Google Scholar 

  • McIntyre T, Lewis GM (1997) The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada. J Soil Contam 6(3):227

    CAS  Google Scholar 

  • Meilan R, Ma C, Eaton J, Hoien E, Taylor M, Holden L, Han K-H, James RR, Stanton BJ (1997) Development of glyphosate-tolerant hybrid cottonwoods. Proceedings 1997 Biological Sciences Symposium. Tappi, Georgia, pp 195–197

    Google Scholar 

  • Pullman GS, Cairney J, Peter G (1998) Clonal forestry and genetic engineering: where we stand, future prospects, and potential impacts on mill operations. Tappi J 81(2):57–64

    CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925

    Article  CAS  Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37(8):27–35

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Sorge M (1995) Toyota’s pollution solution. Automotive Ind 175(12):40

    Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Dev Biol 29:227–232

    Article  Google Scholar 

  • Sykes M, Yang V, Blankenburg J, AbuBakr S (1999) Biotechnology: working with nature to improve forest resources and products, TAPPI international environmental conference, vol 2, Nashville, TN, USA, 18–21 Apr. 1999, pp 631–637

    Google Scholar 

  • Todd D, Pait J, Hodges J (1995) Impact and value of tree improvement in south. J Forestry 83:162–166

    Google Scholar 

  • Zhou LL, Cheng Y, Sun X, Marita J, Ralph JM, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. PNAS 100(18):4939–4944

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bajpai, P. (2012). Tree Improvement. In: Biotechnology for Pulp and Paper Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1409-4_3

Download citation

Publish with us

Policies and ethics