Skip to main content

Glycopeptides and Lipoglycopeptides

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

The scourge of resistance to antibacterial agents is a global problem of increasing severity. A recent review by Boucher and colleagues [33] summarized the alarming viewpoint of the Infectious Diseases Society of America (IDSA) that a stagnated development pipeline combined with continuing evolution of resistance, including emergence of pan-resistant strains, foretells of continued escalating healthcare costs and little reason for optimism in countering resistance to antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aligholi M, Emaneini M, Jabalameli F et al (2008) Emergence of high-level vancomycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract 17(5):432–434

    PubMed  Google Scholar 

  2. Allen NE (2010) From vancomycin to oritavancin: the discovery and development of a novel lipoglycopeptide antibiotic. Antiinfective Agents Med Chem 9(1):23–47

    CAS  Google Scholar 

  3. Allen NE, Nicas TI (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26(5):511–532

    PubMed  CAS  Google Scholar 

  4. Allen NE, LeTourneau DL, Hobbs JN Jr (1997) The role of hydrophobic side chains as determinants of antibacterial activity of semisynthetic glycopeptide antibiotics. J Antibiot (Tokyo) 50(8):677–684

    CAS  Google Scholar 

  5. Allen NE, LeTourneau DL, Hobbs JN Jr (1997) Molecular interactions of a semisynthetic glycopeptide antibiotic with D-alanyl-D-alanine and D-alanyl-D-lactate residues. Antimicrob Agents Chemother 41(1):66–71

    PubMed  CAS  Google Scholar 

  6. Allen NE, LeTourneau DL, Hobbs JN Jr, Thompson RC (2002) Hexapeptide derivatives of glycopeptide antibiotics: tools for mechanism of action studies. Antimicrob Agents Chemother 46(8):2344–2348

    PubMed  CAS  Google Scholar 

  7. Anderegg TR, Biedenbach DJ, Jones RN (2003) Initial quality control evaluations for susceptibility testing of dalbavancin (BI397), an investigational glycopeptide with potent gram-positive activity. J Clin Microbiol 41(6):2795–2796

    PubMed  Google Scholar 

  8. Anderson JS, Matsuhashi M, Haskin MA, Strominger JL (1967) Biosythesis of the peptidoglycan of bacterial cell walls. II. Phospholipid carriers in the reaction sequence. J Biol Chem 242(13):3180–3190

    PubMed  CAS  Google Scholar 

  9. Andes D, Craig WA (2007) In vivo pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob Agents Chemother 51(5):1633–1642

    PubMed  CAS  Google Scholar 

  10. Arhin FF, Sarmiento I, Parr TR Jr, Moeck G (2007) Mechanisms of action of oritavancin in Staphylococcus aureus. In: Abstract C1-1471, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 17–20 Sept 2007

    Google Scholar 

  11. Arhin FF, Sarmiento I, Belley A et al (2008) Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother 52(5):1597–1603

    PubMed  CAS  Google Scholar 

  12. Arhin FF, Kurepina N, Sarmiento I et al (2009) Comparative in vitro activity of oritavancin against recent, genetically diverse, community-associated meticillin-resistant Staphylococcus aureus (MRSA) isolates. Int J Antimicrob Agents 35(1):93–94

    PubMed  Google Scholar 

  13. Arhin FF, Sarmiento I, Parr TR Jr, Moeck G (2009) Comparative in vitro activity of oritavancin against Staphylococcus aureus strains that are resistant, intermediate or heteroresistant to vancomycin. J Antimicrob Chemother 64(4):868–870

    PubMed  CAS  Google Scholar 

  14. Arhin FF, McKay GA, Beaulieu S et al (2009) Impact of human serum albumin on oritavancin in vitro activity against Staphylococcus aureus. Diagn Microbiol Infect Dis 65(2):207–210

    PubMed  CAS  Google Scholar 

  15. Arhin FF, McKay GA, Beaulieu S et al (2009) Time-kill kinetics of oritavancin and comparator agents against Streptococcus pyogenes. Int J Antimicrob Agents 34(6):550–554

    PubMed  CAS  Google Scholar 

  16. Arhin FF, Draghi DC, Pillar CM et al (2009) Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob Agents Chemother 53(11):4762–4771

    PubMed  CAS  Google Scholar 

  17. Arhin FF, Belley A, Sarmiento I, McKay GA et al (2010) Assessment of oritavancin serum protein binding across species. In: Abstract P1239, 20th European congress of clinical microbiology and infectious diseases (ECCMID), Vienna, 10–13 Apr 2010

    Google Scholar 

  18. Asseray N, Jacqueline C, Le Mabecque V et al (2005) Activity of glycopeptides against Staphylococcus aureus infection in a rabbit endocarditis model: MICs do not predict in vivo efficacy. Antimicrob Agents Chemother 49(2):857–859

    PubMed  CAS  Google Scholar 

  19. Atahan E, Katrancioglu N, Oztop Y et al (2009) Vascular graft infection by Staphylococcus aureus: efficacy of linezolid, teicoplanin and vancomycin systemic prophylaxis protocols in a rat model. Cardiovasc J Afr 20(2):122–125

    PubMed  CAS  Google Scholar 

  20. Bailey J, Summers KM (2008) Dalbavancin: a new lipoglycopeptide antibiotic. Am J Health Syst Pharm 65(7):599–610

    PubMed  CAS  Google Scholar 

  21. Bailey EM, Rybak MJ, Kaatz GW (1991) Comparative effect of protein binding on the killing activities of teicoplanin and vancomycin. Antimicrob Agents Chemother 35(6):1089–1092

    PubMed  CAS  Google Scholar 

  22. Beauregard DA, Williams DH, Gwynn MN, Knowles DJ (1995) Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39(3):781–785

    PubMed  CAS  Google Scholar 

  23. Belley A, Harris B, Beveridge TJ et al (2008) Cell wall and membrane effects of oritavancin on Staphylococcus aureus and Enterococcus faecalis. In: Abstract P537, 18th European congress of clinical microbiology and infectious diseases (ECCMID), Barcelona, 19–22 Apr 2008

    Google Scholar 

  24. Belley A, Neesham-Grenon E, McKay G et al (2009) Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 53(3):918–925

    PubMed  CAS  Google Scholar 

  25. Bennett JW, Murray CK, Holmes RL et al (2008) Diminished vancomycin and daptomycin susceptibility during prolonged bacteremia with methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 60(4):437–440

    PubMed  CAS  Google Scholar 

  26. Berglund RA, Zheng H (1999) Reducing agent for reductive alkylation of glycopeptide antibiotics. US patent 5,939,382

    Google Scholar 

  27. Berglund RA, Lockwood NA, Magadanz HE, Zheng H (1999) Reductive alkylation of glycopeptide antibiotics. US patent 5,952,466

    Google Scholar 

  28. Bhavnani SM, Owen JS, Loutit JS et al (2004) Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn Microbiol Infect Dis 50(2):95–102

    PubMed  CAS  Google Scholar 

  29. Bhavnani SM, Rubino CM, Forrest A et al (2007) Use of pharmacokinetic-pharmacodynamic (PK-PD) principles to guide clinical drug development for oritavancin (ORI). In: Abstract A-51, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago

    Google Scholar 

  30. Biedenbach DJ, Bell JM, Sader HS et al (2009) Activities of dalbavancin against a worldwide collection of 81,673 gram-positive bacterial isolates. Antimicrob Agents Chemother 53(3): 1260–1263

    PubMed  CAS  Google Scholar 

  31. Blosser RS, Karlowsky JA, Loutit JS et al (2003) Evaluation of agar-based susceptibility testing of oritavancin against gram-positive cocci. In: Abstract C-070, 103rd American Society for Microbiology Meeting, Washington, DC

    Google Scholar 

  32. Boger DL (2001) Vancomycin, teicoplanin, and ramoplanin: synthetic and mechanistic studies. Med Res Rev 21(5):356–381

    PubMed  CAS  Google Scholar 

  33. BoucherH W, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    Google Scholar 

  34. Boylan CJ, Nicas TI, Preston DA et al (1995) Efficacy of semisynthetic glycopeptides active against vancomycin-resistant enterococci in a mouse infection model. In: Abstract F-255, 35th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 17–20 Sept 1995

    Google Scholar 

  35. Boylan CJ, Campanale K, Iversen PW et al (2003) Pharmacodynamics of oritavancin (LY333328) in a neutropenic-mouse thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 47(5):1700–1706

    PubMed  CAS  Google Scholar 

  36. Bozdogan B, Ednie L, Credito K et al (2004) Derivatives of a vancomycin-resistant Staphylococcus aureus strain isolated at Hershey Medical Center. Antimicrob Agents Chemother 48(12):4762–4765

    PubMed  CAS  Google Scholar 

  37. Breukink E, Humphrey PA, Benton BM, Visscher I (2006) Evidence for a multivalent interaction between telavancin and membrane-bound lipid II. In: Abstract C1-678, 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 Sept 2006

    Google Scholar 

  38. Cabellos C, Fernandez A, Maiques JM et al (2003) Experimental study of LY333328 (oritavancin), alone and in combination, in therapy of cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 47(6):1907–1911

    PubMed  CAS  Google Scholar 

  39. Candiani G, Abbondi M, Borgonovi M et al (1999) In-vitro and in-vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J Antimicrob Chemother 44(2): 179–192

    PubMed  CAS  Google Scholar 

  40. Cavaleri M, Jabes D, Henkel T et al (2005) Methods of administering dalbavancin for treatment of bacterial infections. US patent 6,900,175

    Google Scholar 

  41. Cavaleri M, Riva S, Valagussa A et al (2005) Pharmacokinetics and excretion of dalbavancin in the rat. J Antimicrob Chemother 55(Suppl 2):ii31–ii35

    PubMed  CAS  Google Scholar 

  42. Cavallo JD, Ramisse F, Girardet M et al (2002) Antibiotic susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother 46(7):2307–2309

    PubMed  CAS  Google Scholar 

  43. Cegelski L, Kim SJ, Hing AW et al (2002) Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in Staphylococcus aureus. Biochemistry 41(43):13053–13058

    PubMed  CAS  Google Scholar 

  44. Cegelski L, Steuber D, Mehta AK et al (2006) Conformational and quantitative characterization of oritavancin-peptidoglycan complexes in whole cells of Staphylococcus aureus by in vivo 13 C and 15 N labeling. J Mol Biol 357(4):1253–1262

    PubMed  CAS  Google Scholar 

  45. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7(9):629–641

    PubMed  CAS  Google Scholar 

  46. Charneski L, Patel PN, Sym D (2009) Telavancin: a novel lipoglycopeptide antibiotic. Ann Pharmacother 43(5):928–938

    PubMed  CAS  Google Scholar 

  47. Chau F, Lefort A, Benadda S et al (2009) Differential effect of vancomycin (Vm), daptomycin (D), telavacin (T), and vancomyquine PA1409 assessed by flow cytometry against bacterial cell wall in Enterococcus faecalis. In: Abstract F1-2032, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  48. Chen AY, Zervos MJ, Vazquez JA (2007) Dalbavancin: a novel antimicrobial. Int J Clin Pract 61(5):853–863

    PubMed  CAS  Google Scholar 

  49. Chiu D, Preobrazhenskaya M, Printsevskaya S, Olsufyeva E (2006) Semi-synthetic glycopeptides with antibiotic activity, WO patent application 2006/093947

    Google Scholar 

  50. Chu D (2008) Semi-synthetic glycopeptides with antibacterial activity, WO patent application 2008/140973

    Google Scholar 

  51. Chu D, Myers P, Post L et al (2009) Synthesis and biological properties of a novel series of glycopeptide antibacterial agents. In: Abstract F1-2034, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  52. CLSI (2009) Performance standards for antimicrobial susceptibility testing: 19th information supplement. M100-S19. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  53. Cooper RD, Snyder NJ, Zweifel MJ et al (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot (Tokyo) 49(6):575–581

    CAS  Google Scholar 

  54. Cooper RDG, Huff BE, Nicas TI et al (1998) Glycopeptide antibiotic derivatives. US patent 5,843,889

    Google Scholar 

  55. Courvalin P (2005) Genetics of glycopeptide resistance in gram-positive pathogens. Int J Med Microbiol 294(8):479–486

    PubMed  CAS  Google Scholar 

  56. Craig WA, Andes DR (2004) Activity of oritavancin versus vancomycin in the neutropenic murine thigh-and lung-infection models. In: Abstract A-1863, 44th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Washington, DC

    Google Scholar 

  57. Crowley BM, Boger DL (2006) Total synthesis and evaluation of [Psi[CH2NH]Tpg4]vancomycin aglycon: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 128(9):2885–2892

    PubMed  CAS  Google Scholar 

  58. Cui L, Murakami H, Kuwahara-Arai K et al (2000) Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother 44(9):2276–2285

    PubMed  CAS  Google Scholar 

  59. Cui L, Ma X, Sato K et al (2003) Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 41(1):5–14

    PubMed  CAS  Google Scholar 

  60. Cui L, Iwamoto A, Lian JQ et al (2006) Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50(2):428–438

    PubMed  CAS  Google Scholar 

  61. Cui L, Neoh HM, Shoji M, Hiramatsu K (2009) Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53(3):1231–1234

    PubMed  CAS  Google Scholar 

  62. D’Agata EM, Webb GF, Horn MA et al (2009) Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis 48(3):274–284

    PubMed  Google Scholar 

  63. Darouiche RO, Mansouri MD (2005) Dalbavancin compared with vancomycin for prevention of Staphylococcus aureus colonization of devices in vivo. J Infect 50(3):206–209

    PubMed  CAS  Google Scholar 

  64. Darouiche RO, Mansouri MD, Schneidkraut MJ (2009) Comparative efficacies of telavancin and vancomycin in preventing device-associated colonization and infection by Staphylococcus aureus in rabbits. Antimicrob Agents Chemother 53(6):2626–2628

    PubMed  CAS  Google Scholar 

  65. de Lalla F, Nicolin R, Rinaldi E et al (1992) Prospective study of oral teicoplanin versus oral vancomycin for therapy of pseudomembranous colitis and Clostridium difficile-associated diarrhea. Antimicrob Agents Chemother 36(10):2192–2196

    PubMed  Google Scholar 

  66. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119(9):2464–2474

    PubMed  CAS  Google Scholar 

  67. Depardieu F, Podglajen I, Leclercq R et al (2007) Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20(1):79–114

    PubMed  CAS  Google Scholar 

  68. Deresinski S (2007) Vancomycin: does it still have a role as an antistaphylococcal agent? Expert Rev Anti Infect Ther 5(3):393–401

    PubMed  CAS  Google Scholar 

  69. Domenech O, Francius G, Tulkens PM et al (2009) Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim Biophys Acta 1788(9):1832–1840

    PubMed  CAS  Google Scholar 

  70. Dorr MB, Jabes D, Cavaleri M et al (2005) Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide. J Antimicrob Chemother 55(Suppl 2):ii25–ii30

    PubMed  CAS  Google Scholar 

  71. Dowell JA, Goldstein BP, Buckwalter M et al (2008) Pharmacokinetic-pharmacodynamic modeling of dalbavancin, a novel glycopeptide antibiotic. J Clin Pharmacol 48(9): 1063–1068

    PubMed  CAS  Google Scholar 

  72. Draghi DC, Benton BM, Jones ME et al (2006) In vitro activity of telavancin against enterococci: results of the 2004–2005 US surveillance initiative. In: Abstract E-0717, 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 Sept 2006

    Google Scholar 

  73. Draghi DC, Benton BM, Krause KM et al (2008) Comparative surveillance study of telavancin activity against recently collected gram-positive clinical isolates from across the United States. Antimicrob Agents Chemother 52(7):2383–2388

    PubMed  CAS  Google Scholar 

  74. Drago L, De Vecchi E, Fassina MC et al (1998) Serum and bone concentrations of teicoplanin and vancomycin: study in an animal model. Drugs Exp Clin Res 24(4):185–190

    PubMed  CAS  Google Scholar 

  75. Dunbar LM, Milata J, Fitzpatrick M et al (2009) Efficacy of oritavancin at single or infrequent doses for the treatment of complicated skin and skin structure infections. In: Abstract P1849, 19th European congress of clinical microbiology and infectious diseases (ECCMID), Helsinki, 16–19 May 2009

    Google Scholar 

  76. Elixhauser A, Steiner C (2007) Infections with methicillin-resistant Staphylococcus aureus (MRSA) in U.S. hospitals, 1993–2005. HCUP statistical brief #35, (accessed on September 22, 2011) http://www.hcup-us.ahrq.gov/reports/statbriefs/sb35.pdf

  77. EMEA (2008) (accessed on September 22, 2011) http://www.ema.europa.eu/docs/en_GB/document_library/Other/2010/01/WC500063820.pdf

  78. EMEA (2009) (accessed on September 22, 2011) http://www.ema.europa.eu/docs/en_GB/document_library/Other/2010/01/WC500060559.pdf

  79. Evers S, Courvalin P (1996) Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 178(5):1302–1309

    PubMed  CAS  Google Scholar 

  80. Falcoz C, Ferry N, Pozet N et al (1987) Pharmacokinetics of teicoplanin in renal failure. Antimicrob Agents Chemother 31(8):1255–1262

    PubMed  CAS  Google Scholar 

  81. FDA (2008a) (accessed on September 22, 2011) http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-4394b2-01-FDA.pdf

  82. FDA (2008b) (accessed on September 22, 2011) http://www.fda.gov/ohrms/dockets/ac/08/transcripts/2008-4394t2-part4.pdf

  83. FDA (2008c) (accessed on September 22, 2011) http://www.fda.gov/ohrms/dockets/ac/08/minutes/2008-4394m2-01-final%2019%20Nov%20morning.pdf

  84. FDA (2009a) (accessed on September 22, 2011) http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2009/022110s000ltr.pdf

  85. FDA (2009b) (accessed on September 22, 2011) http://www.astellas.us/docs/us/VIBATIV_PI_Final.pdf

  86. Fetterly GJ, Ong CM, Bhavnani SM et al (2005) Pharmacokinetics of oritavancin in plasma and skin blister fluid following administration of a 200-milligram dose for 3 days or a single 800-milligram dose. Antimicrob Agents Chemother 49(1):148–152

    PubMed  CAS  Google Scholar 

  87. Finegold SM, Bolanos M, Sumannen PH et al (2009) In vitro activities of telavancin and six comparator agents against anaerobic bacterial isolates. Antimicrob Agents Chemother 53(9):3996–4001

    PubMed  CAS  Google Scholar 

  88. Forrest TM, Wilson GE, Pan Y et al (1991) Characterization of cross-linking of cell walls of Bacillus subtilis by a combination of magic-angle spinning NMR and gas chromatography-mass spectrometry of both intact and hydrolyzed 13 C- and 15 N-labeled cell-wall peptidoglycan. J Biol Chem 266(36):24485–24491

    PubMed  CAS  Google Scholar 

  89. Ge M, Chen Z, Onishi HR et al (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284(5413):507–511

    PubMed  CAS  Google Scholar 

  90. Gerber J, Smirnov A, Wellmer A et al (2001) Activity of LY333328 in experimental meningitis caused by a Streptococcus pneumoniae strain susceptible to penicillin. Antimicrob Agents Chemother 45(7):2169–2172

    PubMed  CAS  Google Scholar 

  91. Gerding DN, Muto CA, Owens RC Jr (2008) Treatment of Clostridium difficile infection. Clin Infect Dis 46(Suppl 1):S32–S42

    PubMed  CAS  Google Scholar 

  92. Giamarellou G, O’Riordan W, Harris H et al (2001) Phase III trial comparing 3–7 days of oritavancin vs. 10–14 days of vancomycin/cephalexin in the treatment of patients with complicated skin/skinstructure infections. In: Abstract L-739, 41st interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 16–19 Dec 2001

    Google Scholar 

  93. Giesbrecht P, Kersten T, Maidhof H et al (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62(4):1371–1414

    PubMed  CAS  Google Scholar 

  94. Goldstein BP, Selva E, Gastaldo L et al (1987) A40926, a new glycopeptide antibiotic with anti-Neisseria activity. Antimicrob Agents Chemother 31(12):1961–1966

    PubMed  CAS  Google Scholar 

  95. Goldstein EJ, Citron DM, Merriam CV et al (2003) In vitro activities of dalbavanc in and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob Agents Chemother 47(6):1968–1971

    PubMed  CAS  Google Scholar 

  96. Goldstein B, Seltzer E, Flamm R, et al (2005) Dalbavancin phase III skin and skin structure (SSSI) studies: pathogens and microbiological efficacy. In: Abstract L-1557, 45th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Washington, DC, 16–19 Dec 2005

    Google Scholar 

  97. Goldstein BP, Draghi DC, Sheehan DJ et al (2007) Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 51(4):1150–1154

    PubMed  CAS  Google Scholar 

  98. Goldstein EJ, Citron DM, Tyrrell KL et al (2010) Bactericidal activity of telavancin, vancomycin and metronidazole against Clostridium difficile. Anaerobe 16(3):220–222

    PubMed  CAS  Google Scholar 

  99. Gotfried MH, Shaw JP, Benton BM et al (2008) Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrob Agents Chemother 52(1):92–97

    PubMed  CAS  Google Scholar 

  100. Griffith RS (1981) Introduction to vancomycin. Rev Infect Dis 3(Suppl):S200–S204

    PubMed  Google Scholar 

  101. Griffith BR, Krepel C, Fu X et al (2007) Model for antibiotic optimization via neoglycosylation: synthesis of liponeoglycopeptides active against VRE. J Am Chem Soc 129(26): 8150–8155

    PubMed  CAS  Google Scholar 

  102. Hartman CS, Bates B, Wasilewski M (2008) Oritavancin in the treatment of complicated skin and skin structure infections: combined results of two Phase 3 multinational trials. In: Abstract L-1514, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Oct 2008

    Google Scholar 

  103. Hegde SS, Reyes N, Wiens T et al (2004) Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria. Antimicrob Agents Chemother 48(8):3043–3050

    PubMed  CAS  Google Scholar 

  104. Hegde SS, Reyes N, Skinner R et al (2008) Efficacy of telavancin in a murine model of pneumonia induced by methicillin-susceptible Staphylococcus aureus. J Antimicrob Chemother 61(1):169–172

    PubMed  CAS  Google Scholar 

  105. Hegde SS, Difuntorum S, Skinner R et al (2009) Efficacy of telavancin against glycopeptide-intermediate Staphylococcus aureus in the neutropenic mouse bacteraemia model. J Antimicrob Chemother 63(4):763–766

    PubMed  CAS  Google Scholar 

  106. Heine HS, Bassett J, Miller L (2005) In vitro and in vivo activity of dalbavancin (DAL) against Bacillus anthracis (BA). In: Abstract F-2079, 45th interscience conference on antimicrobial agents and chemotherapy (ICAAC) Washington, DC, 16–19 Dec 2005

    Google Scholar 

  107. Heine HS, Bassett J, Miller L et al (2008) Efficacy of oritavancin in a murine model of Bacillus anthracis spore inhalation anthrax. Antimicrob Agents Chemother 52(9):3350–3357

    PubMed  CAS  Google Scholar 

  108. Heine HS, Purcell BK, Bassett J et al (2010) Activity of dalbavancin against Bacillus ­anthracis in vitro and in a mouse inhalation anthrax model. Antimicrob Agents Chemother 54(3): 991–996

    PubMed  CAS  Google Scholar 

  109. Higgins DL, Chang R, Debabov DV et al (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49(3):1127–1134

    PubMed  CAS  Google Scholar 

  110. Howden BP, Smith DJ, Mansell A et al (2008) Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia. BMC Microbiol 8:39

    PubMed  Google Scholar 

  111. Jabes D, Candiani G, Riva S et al (2003) Superior efficacy of short treatment duration of ramoplanin over vancomycin in the hamster model of C. difficile associated colitis. In: Abstract B-328, 43rd interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 14–17 Sept 2003

    Google Scholar 

  112. Jabes D, Candiani G, Romano G et al (2004) Efficacy of dalbavancin against methicillin-resistant Staphylococcus aureus in the rat granuloma pouch infection model. Antimicrob Agents Chemother 48(4):1118–1123

    PubMed  CAS  Google Scholar 

  113. Jauregui LE, Babazadeh S, Seltzer E et al (2005) Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis 41(10):1407–1415

    PubMed  CAS  Google Scholar 

  114. Jia WT, Zhang X, Luo SH (2009) Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater 6(3):812–819

    Google Scholar 

  115. Judice JK, Pace JL (2003) Semi-synthetic glycopeptide antibacterials. Bioorg Med Chem Lett 13(23):4165–4168

    PubMed  CAS  Google Scholar 

  116. Kaatz GW, Seo SM, Aeschlimann JR et al (1998) Efficacy of LY333328 against experimental methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 42(4):981–983

    PubMed  CAS  Google Scholar 

  117. Kaniga K, Blosser RS, Karlowsky JA et al (2004) In vitro activity of telavancin (TD-6424) against Bacillus anthracis. In: Abstract E-2010, 44th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Washington, DC, 30 Oct–2Nov 2004

    Google Scholar 

  118. Kashket ER (1981) Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J Bacteriol 146(1):369–376

    PubMed  CAS  Google Scholar 

  119. Kemper MA, Urrutia MM, Beveridge TJ et al (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175(17):5690–5696

    PubMed  CAS  Google Scholar 

  120. Kim SJ, Cegelski L, Studelska DR et al (2002) Rotational-echo double resonance characterization of vancomycin binding sites in Staphylococcus aureus. Biochemistry 41(22):6967–6977

    PubMed  CAS  Google Scholar 

  121. Kim SJ, Cegelski L, Preobrazhenskaya M et al (2006) Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13 C{19 F} and 15 N{19F} rotational-echo double resonance. Biochemistry 45(16): 5235–5250

    PubMed  CAS  Google Scholar 

  122. Kim SJ, Matsuoka S, Patti GJ et al (2008) Vancomycin derivative with damaged D-Ala-D-Ala binding cleft binds to cross-linked peptidoglycan in the cell wall of Staphylococcus aureus. Biochemistry 47(12):3822–3831

    PubMed  CAS  Google Scholar 

  123. Kim SJ, Cegelski L, Stueber D et al (2008) Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 377(1):281–293

    PubMed  CAS  Google Scholar 

  124. Kim SJ, Singh M, Dietrich E et al (2009) Mechanism of glycopeptide resistance in Mu50, a Staphylococcus aureus strain with intermediate glycopeptide resistance, by solid-state NMR. In: Abstract C1-1357, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  125. Kim SJ, Singh M, Schaefer J (2009) Oritavancin binds to isolated protoplast membranes but not intact protoplasts of Staphylococcus aureus. J Mol Biol 391(2):414–425

    PubMed  CAS  Google Scholar 

  126. Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771

    PubMed  CAS  Google Scholar 

  127. Klinman DM, Tross D (2009) A single-dose combination therapy that both prevents and treats anthrax infection. Vaccine 27(12):1811–1815

    PubMed  CAS  Google Scholar 

  128. Knudsen JD, Fuursted K, Espersen F et al (1997) Activities of vancomycin and teicoplanin against penicillin-resistant pneumococci in vitro and in vivo and correlation to pharmacokinetic parameters in the mouse peritonitis model. Antimicrob Agents Chemother 41(9): 1910–1915

    PubMed  CAS  Google Scholar 

  129. Knudsen JD, Raber S, Legget J et al (1997) Comparison of effect of LY333328 with teicoplanin and vancomycin against pneumococci in the mouse peritonitis model. In: Abstract F-10, new antimicrobials (Pre US IND), including chemistry and susceptibility

    Google Scholar 

  130. Knudsen JD, Fuursted K, Raber S et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44(5):1247–1254

    PubMed  CAS  Google Scholar 

  131. Kosowska-Shick K, Clark C, Pankuch GA (2009) Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob Agents Chemother 53(10):4217–4224

    PubMed  CAS  Google Scholar 

  132. Krause KM, Renelli M, Difuntorum S et al (2008) In vitro activity of telavancin against resistant gram-positive bacteria. Antimicrob Agents Chemother 52(7):2647–2652

    PubMed  CAS  Google Scholar 

  133. Leadbetter MR, Adams SM, Bazzini B et al (2004) Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot (Tokyo) 57(5):326–336

    CAS  Google Scholar 

  134. Lefort A, Saleh-Mghir A, Garry L et al (2000) Activity of LY333328 combined with gentamicin in vitro and in rabbit experimental endocarditis due to vancomycin-susceptible or -­resistant Enterococcus faecalis. Antimicrob Agents Chemother 44(11):3017–3021

    PubMed  CAS  Google Scholar 

  135. Lefort A, Pavie J, Garry L et al (2004) Activities of dalbavancin in vitro and in a rabbit model of experimental endocarditis due to Staphylococcus aureus with or without reduced susceptibility to vancomycin and teicoplanin. Antimicrob Agents Chemother 48(3):1061–1064

    PubMed  CAS  Google Scholar 

  136. Lehoux D, Arhin FF, Fadhil I et al (2006) Oritavancin demonstrates rapid and sustained bactericidal activity in the rat granuloma pouch model of Staphylococcus aureus infection (poster B-0404). In: Abstract B-0404, 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 Sept 2006

    Google Scholar 

  137. Lehoux D, McKay GA, Fadhil I et al (2007) Efficacy of oritavancin in a mouse model of Streptococcus pneumoniae pneumonia. In: Abstract P1781, 17th European congress of clinical microbiology and infectious diseases (ECCMID), Munich, 3 Apr 2007

    Google Scholar 

  138. Lehoux D, Okusanya OO, Ostiguy V et al (2007) PK-PD of oritavancin against S. pneumoniae in a murine-pneumonia infection model. In: Abstract A-49, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 17–20 Sept 2007

    Google Scholar 

  139. Lehoux D, Fadhil I, Gagné J et al (2008) Efficacy of oritavancin against Clostridium difficile (CD) infection in the hamster model of CD infection (CDI). In: Abstract B-067, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Oct 2008

    Google Scholar 

  140. Lehoux D, Ostiguy V, Fadhil I et al (2008) Efficacy of oritavancin (ORI) in the mouse bacteremia model. In: Abstract B-1009, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Sept 2008

    Google Scholar 

  141. Leighton A, Gottlieb AB, Dorr MB et al (2004) Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob Agents Chemother 48(3):940–945

    PubMed  CAS  Google Scholar 

  142. Leuthner KD, Cheung CM, Rybak MJ (2006) Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 58(2):338–343

    PubMed  CAS  Google Scholar 

  143. Liu J, Lee J (2009) Hydrochloride salts of a glycopeptide phosphonate derivative. US patent 7,531,623

    Google Scholar 

  144. Lodise TP Jr, Gotfried M, Barriere S et al (2008) Telavancin penetration into human epithelial lining fluid determined by population pharmacokinetic modeling and Monte Carlo simulation. Antimicrob Agents Chemother 52(7):2300–2304

    PubMed  CAS  Google Scholar 

  145. Long DD, Aggen JB, Christensen BG et al (2008) A multivalent approach to drug discovery for novel antibiotics. J Antibiot (Tokyo) 61(10):595–602

    CAS  Google Scholar 

  146. LongD D, Aggen JB, Chinn J et al (2008) Exploring the positional attachment of glycopeptide/beta-lactam heterodimers. J Antibiot (Tokyo) 61(10):603–614

    Google Scholar 

  147. Lunde CS, Hartouni SR, Janc JW et al (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53(8):3375–3383

    PubMed  CAS  Google Scholar 

  148. Madrigal AG, Basuino L, Chambers HF (2005) Efficacy of telavancin in a rabbit model of aortic valve endocarditis due to methicillin-resistant Staphylococcus aureus or vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3163–3165

    PubMed  CAS  Google Scholar 

  149. Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55(Suppl 2):ii15–ii20

    PubMed  CAS  Google Scholar 

  150. Malabarba A, Trani A, Strazzolini P et al (1989) Synthesis and biological properties of N63-carboxamides of teicoplanin antibiotics. Structure-activity relationships. J Med Chem 32(11): 2450–2460

    PubMed  CAS  Google Scholar 

  151. Malabarba A, Ciabatti R, Kettenring J et al (1992) Synthesis and antibacterial activity of a series of basic amides of teicoplanin and deglucoteicoplanin with polyamines. J Med Chem 35(22):4054–4060

    PubMed  CAS  Google Scholar 

  152. Malabarba A, Ciabatti R, Gerli E et al (1997) Substitution of amino acids 1 and 3 in teicoplanin aglycon: synthesis and antibacterial activity of three first non-natural dalbaheptides. J Antibiot (Tokyo) 50(1):70–81

    CAS  Google Scholar 

  153. Malabarba A, Nicas T, Ciabatti R (1997) Glycopeptide resistance in multiple antibiotic resistant gram-positive bacteria: a current challenge for novel semi-synthetic glycopeptide derivatives. Eur J Med Chem 32:459–478

    CAS  Google Scholar 

  154. Manquat G, Croize J, Stahl JP et al (1992) Failure of teicoplanin treatment associated with an increase in MIC during therapy of Staphylococcus aureus septicaemia. J Antimicrob Chemother 29(6):731–732

    PubMed  CAS  Google Scholar 

  155. Mascio CT, Alder JD, Silverman JA (2007) Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51(12):4255–4260

    PubMed  CAS  Google Scholar 

  156. Matias VR, Beveridge TJ (2007) Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol Microbiol 64(1):195–206

    PubMed  CAS  Google Scholar 

  157. Matsuhashi M, Dietrich CP, Strominger JL (1965) Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci USA 54(2):587–594

    PubMed  CAS  Google Scholar 

  158. McCallum N, Karauzum H, Getzmann R et al (2006) In vivo survival of teicoplanin-resistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob Agents Chemother 50(7):2352–2360

    PubMed  CAS  Google Scholar 

  159. McKay GA, Fadhil I, Beaulieu S et al (2006) Oritavancin disrupts transmembrane potential and membrane integrity concomitantly with cell killing in Staphylococcus aureus and vancomycin-resistant enterococci. In: Abstract C1-682, 46th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 27–30 Sept 2006

    Google Scholar 

  160. McKay GA, Beaulieu S, Arhin FF et al (2009) Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 63(6):1191–1199

    PubMed  CAS  Google Scholar 

  161. McKay GA, Beaulieu S, Sarmiento I et al (2009) Impact of human serum albumin on oritavancin in vitro activity against enterococci. Antimicrob Agents Chemother 53(6): 2687–2689

    PubMed  CAS  Google Scholar 

  162. Meunier B, Cazelles J, Sanchez M et al (2009) Vancomyquine PA1409: pharmacokinetics in dog. In: Abstract F1-2033, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  163. Meunier B, Sanchez M, Duval C et al (2009) Vancomyquine PA1409: a new hybrid antibacterial molecule. In: Abstract F1-2031, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco

    Google Scholar 

  164. Miro JM, Garcia-de-la-Maria C, Armero Y et al (2007) Efficacy of telavancin in the treatment of experimental endocarditis due to glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 51(7):2373–2377

    PubMed  CAS  Google Scholar 

  165. Moellering RC Jr (2005) The management of infections due to drug-resistant gram-positive bacteria. Eur J Clin Microbiol Infect Dis 24(12):777–779

    PubMed  Google Scholar 

  166. Moellering JR (2006) Introduction: vancomycin: a 50 year reassessment. Clin Infect Dis 42(s1):S3–S4

    PubMed  Google Scholar 

  167. Moriarty S, Wasilewski M, Rosen AS et al (2009) Safety of oritavancin versus vancomycin for the treatment of patients with complicated skin and skin structure infections. In: Abstract P1853, 19th European congress of clinical microbiology and infectious diseases (ECCMID), Helsinki, 16–19 May 2009

    Google Scholar 

  168. Mwangi MM, Wu SW, Zhou Y et al (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 104(22):9451–9456

    PubMed  CAS  Google Scholar 

  169. Nagarajan R, Schabel AA, Occolowitz JL et al (1988) Synthesis and antibacterial activity of N-acyl vancomycins. J Antibiot (Tokyo) 41(10):1430–1438

    CAS  Google Scholar 

  170. Nagarajan R, Schabel AA, Occolowitz JL et al (1989) Synthesis and antibacterial evaluation of N-alkyl vancomycins. J Antibiot (Tokyo) 42(1):63–72

    CAS  Google Scholar 

  171. NARSA (2010) (accessed on September 22, 2011) http://www.narsa.net/control/member/allapprovedisolates

  172. NCCLS (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline, NCCLS document M26-A. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  173. Ndieyira JW, Watari M, Barrera AD (2008) Nanomechanical detection of antibiotic-­mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol 3(11):691–696

    PubMed  CAS  Google Scholar 

  174. Neoh HM, Cui L, Yuzawa H et al (2008) Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-­intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52(1): 45–53

    PubMed  CAS  Google Scholar 

  175. Nguyen HA, Denis O, Vergison A et al (2009) Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations. Antimicrob Agents Chemother 53(4):1443–1449

    PubMed  CAS  Google Scholar 

  176. Nicolaou KC, Boddy CN, Brase S et al (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed Engl 38(15):2096–2152

    PubMed  Google Scholar 

  177. Nicolau DP, Sun HK, Seltzer E et al (2007) Pharmacokinetics of dalbavancin in plasma and skin blister fluid. J Antimicrob Chemother 60(3):681–684

    PubMed  CAS  Google Scholar 

  178. Norden CW, Niederreiter K, Shinners EM (1986) Treatment of experimental chronic osteomyelitis due to Staphylococcus aureus with teicoplanin. Infection 14(3):136–138

    PubMed  CAS  Google Scholar 

  179. Noren T, Alriksson I, Akerlund T et al (2009) In vitro susceptibility to 17 antimicrobials among clinical Clostridium difficile isolates collected 1993–2007 in Sweden. Clin Microbiol Infect 16(8):1104–1110

    PubMed  Google Scholar 

  180. O’Connor R, Baines SD, Freeman J et al (2008) In vitro susceptibility of genotypically distinct and clonal Clostridium difficile strains to oritavancin. J Antimicrob Chemother 62(4): 762–765

    PubMed  Google Scholar 

  181. Oberthur M, Leimkuhler C, Kruger RG et al (2005) A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases. J Am Chem Soc 127(30):10747–10752

    PubMed  Google Scholar 

  182. Okusanya OO, Lehoux D, Van Wart SA et al (2009) Pharmacokinetics and pharmacokinetics-pharmacodynamics of oritavancin against Staphylococcus aureus using data from a neutropenic murine thigh-infection model. In: Abstract A1-1287, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco

    Google Scholar 

  183. Olsuf’eva E, Preobrazhensaya M (2006) Structure–activity relationships in a series of semisynthetic polycyclic glycopeptide antibiotics. Russ J Bioorganic Chem 32(4):303–322

    Google Scholar 

  184. Orhan Z, Cevher E, Yildiz A et al (2009) Biodegradable microspherical implants containing teicoplanin for the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. Arch Orthop Trauma Surg 130(1):135–142

    Google Scholar 

  185. Ostiguy V, Fadhil I, Malouin M et al (2009) Efficacy of oritavancin in the rat haematogenous pneumonia model. In: Abstract P1028, 19th European congress of clinical microbiology and infectious diseases (ECCMID), Helsinki, 17–19 May 2009

    Google Scholar 

  186. Pan Y, Shenouda NS, Wilson GE et al (1993) Cross-links in cell walls of Bacillus subtilis by rotational-echo double-resonance 15 N NMR. J Biol Chem 268(25):18692–18695

    PubMed  CAS  Google Scholar 

  187. Patti GJ, Kim SJ, Schaefer J (2008) Characterization of the peptidoglycan of vancomycin-susceptible Enterococcus faecium. Biochemistry 47(32):8378–8385

    PubMed  CAS  Google Scholar 

  188. Patti GJ, Kim SJ, Yu TY et al (2009) Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol 392(5):1178–1191

    PubMed  CAS  Google Scholar 

  189. Pavlov AY, Berdnikova TF, Olsufyeva EN et al (1993) Synthesis and biological activity of derivatives of glycopeptide antibiotics eremomycin and vancomycin nitrosated, acylated or carbamoylated at the N-terminal. J Antibiot (Tokyo) 46(11):1731–1739

    CAS  Google Scholar 

  190. Pavlov AY, Lazhko EI, Preobrazhenskaya MN (1997) A new type of chemical modification of glycopeptides antibiotics: aminomethylated derivatives of eremomycin and their antibacterial activity. J Antibiot (Tokyo) 50(6):509–513

    CAS  Google Scholar 

  191. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM et al (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34(10):1869–1874

    PubMed  CAS  Google Scholar 

  192. Perichon B, Courvalin P (2000) Update on vancomycin resistance. Int J Clin Pract 54(4):250–254

    PubMed  CAS  Google Scholar 

  193. Perichon B, Courvalin P (2009) VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53(11):4580–4587

    PubMed  CAS  Google Scholar 

  194. Pfizer (2009) (accessed on September 22, 2011) http://www.pfizer.com/investors/sec_filings/sec_filings.jsp

  195. Poulakou G, Giamarellou H (2008) Oritavancin: a new promising agent in the treatment of infections due to gram-positive pathogens. Expert Opin Investig Drugs 17(2):225–243

    PubMed  CAS  Google Scholar 

  196. Raad I, Darouiche R, Vazquez J et al (2005) Efficacy and safety of weekly dalbavancin therapy for catheter related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis 40(3):374–380

    PubMed  CAS  Google Scholar 

  197. Renelli M, Harris B, Beveridge T et al (2007) Transmission electron microscopy (TEM) study of the ultrastructural effects of telavancin, a novel lipoglycopeptide, on methicillin-resistant Staphylococcus aureus. In: Abstract C1-1470, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 17–20 Sept 2007

    Google Scholar 

  198. Reyes N, Skinner R, Benton BM et al (2006) Efficacy of telavancin in a murine model of bacteraemia induced by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 58(2):462–465

    PubMed  CAS  Google Scholar 

  199. Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8(11):943–950

    PubMed  CAS  Google Scholar 

  200. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081

    PubMed  Google Scholar 

  201. Rodvold KA, Gotfried MH, Loutit JS et al (2004) Presented at the 14th European congress of clinical microbiology and infectious diseases prague. European Society of Clinical Microbiology and Infectious Diseases, Basel

    Google Scholar 

  202. Rodvold KA, Gotfried MH, Loutit JS et al (2004) Plasma and intrapulmonary concentrations of oritavancin and vancomycin in normal healthy adults. In: Abstract O254, 14th European congress of clinical microbiology and infectious diseases (ECCMID), Basel

    Google Scholar 

  203. Rubino CM, Van Wart SA, Bhavnani SM et al (2009) Oritavancin population pharmacokinetics in healthy subjects and patients with complicated skin and skin structure infections or bacteremia. Antimicrob Agents Chemother 53(10):4422–4428

    PubMed  CAS  Google Scholar 

  204. Rubinstein E, Corey GR, Stryjewski ME et al (2008) Telavancin for treatment of hospital-acquired pneumonia (HAP) caused by MRSA and MSSA: the ATTAIN studies. In: Abstract K-530, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Oct 2008

    Google Scholar 

  205. Rubinstein EGRC, Voucher HW, Niederman MS et al (2008) Telavancin for the treatment of hospital-acquired pneumonia in Severely ill and older patients: the ATTAIN studies. In: Abstract K-529, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Oct 2008

    Google Scholar 

  206. Rubinstein EGRC, Stryjewski ME, Boucher HW et al (2008) Telavancin for hospital-acquired pneumonia including ventilator-associated pneumonia: the ATTAIN studies. In: Abstract 075, 18th European congress of clinical microbiology and infectious diseases (ECCMID), Barcelona, 19–22 Apr 2008

    Google Scholar 

  207. Rupp ME, Ulphani J (1998) Efficacy of LY333328 in a rat model of Staphylococcus aureus central venous catheter-associated infection. In: Abstract F-111, 38th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Diego

    Google Scholar 

  208. Rupp ME, Fey PD, Longo GM (2001) Effect of LY333328 against vancomycin-resistant Enterococcus faecium in a rat central venous catheter-associated infection model. J Antimicrob Chemother 47(5):705–707

    PubMed  CAS  Google Scholar 

  209. Rybak MJ (2006) The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42(Suppl 1):S35–S39

    PubMed  CAS  Google Scholar 

  210. Rybak MJ, Leonard SN, Rossi KL et al (2008) Characterization of vancomycin-­heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986 to 2007). J Clin Microbiol 46(9):2950–2954

    PubMed  Google Scholar 

  211. Rybak MJ, Lomaestro BM, Rotscahfer JC et al (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49(3):325–327

    PubMed  Google Scholar 

  212. Rybak MJ, Lomaestro BM, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 29(11):1275–1279

    PubMed  CAS  Google Scholar 

  213. Saha B, Singh AK, Ghosh A, Bal M (2008) Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). J Med Microbiol 57(Pt 1):72–79

    PubMed  CAS  Google Scholar 

  214. Sahm DF, Moeck G, Arhin FF, Draghi DC (2007) In vitro activity profile of oritavancin against resistant staphylococcal populations from a recent surveillance initiative. In: Abstract E-1617, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC) Chicago, 17–20 Sept 2007

    Google Scholar 

  215. Sakoulas G, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46(Suppl 5):S360–S367

    PubMed  CAS  Google Scholar 

  216. Saleh-Mghir A, Lefort A, Petegnief Y et al (1999) Activity and diffusion of LY333328 in experimental endocarditis due to vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 43(1):115–120

    PubMed  CAS  Google Scholar 

  217. Saravolatz LD, Pawlak J, Johnson LB (2007) Comparative activity of telavancin against isolates of community-associated methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 60(2):406–409

    PubMed  CAS  Google Scholar 

  218. Schaad HJ, Chuard C, Vaudaux P et al (1994) Teicoplanin alone or combined with rifampin compared with vancomycin for prophylaxis and treatment of experimental foreign body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 38(8):1703–1710

    PubMed  CAS  Google Scholar 

  219. Schaefer J, Garbow JR, Jacob GS et al (1986) Characterization of peptidoglycan stem lengths by solid-state 13 C and 15 N NMR. Biochem Biophys Res Commun 137(2):736–741

    PubMed  CAS  Google Scholar 

  220. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69(4):585–607

    PubMed  CAS  Google Scholar 

  221. Seltzer E, Dorr MB, Goldstein BP et al (2003) Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin Infect Dis 37(10):1298–1303

    PubMed  CAS  Google Scholar 

  222. Sharif S, Kim SJ, Labischinski H et al (2009) Characterization of peptidoglycan in fem-deletion mutants of methicillin-resistant Staphylococcus aureus by solid-state NMR. Biochemistry 48(14):3100–3108

    PubMed  CAS  Google Scholar 

  223. Sharif S, Singh M, Kim SJ et al (2009) Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion. J Am Chem Soc 131(20):7023–7030

    PubMed  CAS  Google Scholar 

  224. Shaw JP, Seroogy J, Kaniga K et al (2005) Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 49(1):195–201

    PubMed  CAS  Google Scholar 

  225. Sieradzki K, Leski T, Dick J et al (2003) Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41(4):1687–1693

    PubMed  CAS  Google Scholar 

  226. Solon EG, Dowell JA, Lee J et al (2007) Distribution of radioactivity in bone and related structures following administration of [14 C]dalbavancin to New Zealand white rabbits. Antimicrob Agents Chemother 51(8):3008–3010

    PubMed  CAS  Google Scholar 

  227. Stanley D, McGrath BJ, Lamp KC et al (1994) Effect of human serum on killing activity of vancomycin and teicoplanin against Staphylococcus aureus. Pharmacotherapy 14(1):35–39

    PubMed  CAS  Google Scholar 

  228. Stevens DL (2006) The role of vancomycin in the treatment paradigm. Clin Infect Dis 42(Suppl 1):S51–S57

    PubMed  CAS  Google Scholar 

  229. Stryjewski ME, O’Riordan WD, Lau WK et al (2005) Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin Infect Dis 40(11):1601–1607

    PubMed  CAS  Google Scholar 

  230. Stryjewski ME, Chu VH, O’Riordan WD et al (2006) Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother 50(3):862–867

    PubMed  CAS  Google Scholar 

  231. Stryjewski ME, Graham DR, Wilson SE et al (2008) Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis 46(11):1683–1693

    PubMed  CAS  Google Scholar 

  232. Stucki A, Gerber P, Acosta F et al (2006) Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob Agents Chemother 50(2):770–773

    PubMed  CAS  Google Scholar 

  233. Sun HK, Duchin K, Nightingale CH et al (2006) Tissue penetration of telavancin after intravenous administration in healthy subjects. Antimicrob Agents Chemother 50(2):788–790

    PubMed  CAS  Google Scholar 

  234. Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 53(10):4069–4079

    PubMed  CAS  Google Scholar 

  235. Targanta (2008) (accessed on September 22, 2011) http://media.integratir.com/targ/PressReleases/Complete%20Response_final.pdf

  236. Theravance (2005) (accessed on September 22, 2011) http://ir.theravance.com/ReleaseDetail.cfm?releaseid=158679

  237. Theravance (2009a) (accessed on September 22, 2011) http://investor.theravance.com/secfiling.cfm?filingID=1047469-09-1903

  238. Theravance (2009b) (accessed on September 22, 2011) http://files.shareholder.com/downloads/THERA/731551834x0x334369/107ba636-2b50-4a77-a55e-c0735d21af02/TLV_Complete_Response_NP_Press_Release_Final_2009Nov27.pdf

  239. Theravance/Astellas (2009) (accessed on September 22, 2011) http://www.us.astellas.com/docs/us/VIBATIV%20cSSSI%20Launch%20Press%20Release%202009Nov5%20Final.pdf [Online]

  240. Thompson R C (1999) Urea and thiourea derivatives of glycopeptides. US patent 5,919,771

    Google Scholar 

  241. Thompson RC, Wilkie SC (1999) Glycopeptide hexapeptides. US patent 5,952,310

    Google Scholar 

  242. Thompson RC, Wilkie SC (1999) Alkylated hexapeptides. US patent 5,977,063

    Google Scholar 

  243. Thompson RC, Wilkie SC (2003) N1 modified glycopeptides. US patent 6,670,446

    Google Scholar 

  244. Tong G, Pan Y, Dong H et al (1997) Structure and dynamics of pentaglycyl bridges in the cell walls of Staphylococcus aureus by 13 C-15N REDOR NMR. Biochemistry 36(32):9859–9866

    PubMed  CAS  Google Scholar 

  245. Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol 186(11):3286–3295

    PubMed  CAS  Google Scholar 

  246. Tsuji BT, Leonard SN, Rhomberg PR et al (2008) Evaluation of daptomycin, telavancin, teicoplanin, and vancomycin activity in the presence of albumin or serum. Diagn Microbiol Infect Dis 60(4):441–444

    PubMed  CAS  Google Scholar 

  247. Tsuji BT, Bulitta JB, Kelclin PA et al (2009) Determining the active fraction of daptomycin against MRSA by evaluating bactericidal activity in the presence of protein and pharmacodynamic (PD) modeling. In: Abstract A1-1270, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  248. Turnbull PC, Sirianni NM, LeBron CI et al (2004) MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol 42(8): 3626–3634

    PubMed  CAS  Google Scholar 

  249. Tuzuner T, Sencan I, Ozdemir D et al (2006) In vivo evaluation of teicoplanin- and calcium sulfate-loaded PMMA bone cement in preventing implant-related osteomyelitis in rats. J Chemother 18(6):628–633

    PubMed  CAS  Google Scholar 

  250. Van Bambeke F (2004) Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol 4(5):471–478

    PubMed  Google Scholar 

  251. Van Bambeke F (2006) Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 7(8):740–749

    PubMed  Google Scholar 

  252. Van Bambeke F, Van Laethem Y, Courvalin P et al (2004) Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs 64(9):913–936

    PubMed  Google Scholar 

  253. Van Bambeke F, Carryn S, Seral C et al (2004) Cellular pharmacokinetics and pharmacodynamics of the glycopeptide antibiotic oritavancin (LY333328) in a model of J774 mouse macrophages. Antimicrob Agents Chemother 48(8):2853–2860

    PubMed  Google Scholar 

  254. Vaudaux P, Francois P, Berger-Bachi B et al (2001) In vivo emergence of subpopulations expressing teicoplanin or vancomycin resistance phenotypes in a glycopeptide-susceptible, methicillin-resistant strain of Staphylococcus aureus. J Antimicrob Chemother 47(2): 163–170

    PubMed  CAS  Google Scholar 

  255. Walsh CT, Fisher SL, Park IS et al (1996) Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 3(1):21–28

    PubMed  CAS  Google Scholar 

  256. Walsh C, Freel Meyers CL, Losey HC (2003) Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 46(16):3425–3436

    PubMed  CAS  Google Scholar 

  257. Wang TSA, Kahne D, Walker S (2007) Probing the mechanism of inhibition of bacterial peptidoglycan glycosyltransferases by glycopeptide analogs. In: Abstract C1-1474, 47th interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 17–20 Sept 2007

    Google Scholar 

  258. Wasilewski M, Disch D, McGill J et al (2001) Equivalence of shorter course therapy with oritavancin vs. vancomycin/cephalexin in complicated skin/skin sturcture infections (cSSSI). In: Abstract 41st interscience conference on antimicrobial agents and chemotherapy (ICAAC), Chicago, 16–19 Dec 2001

    Google Scholar 

  259. Wenisch C, Parschalk B, Hasenhundl M et al (1996) Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 22(5):813–818

    PubMed  CAS  Google Scholar 

  260. Williams DH, Waltho JP (1988) Molecular basis of the activity of antibiotics of the vancomycin group. Biochem Pharmacol 37(1):133–141

    PubMed  CAS  Google Scholar 

  261. Williams DH, Maguire AJ, Tsuzuki W et al (1998) An analysis of the origins of a cooperative binding energy of dimerization. Science 280(5364):711–714

    PubMed  CAS  Google Scholar 

  262. Wilson AP (2000) Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet 39(3): 167–183

    PubMed  CAS  Google Scholar 

  263. Wong SL, Barriere SL, Kitt MM et al (2008) Multiple-dose pharmacokinetics of intravenous telavancin in healthy male and female subjects. J Antimicrob Chemother 62(4):780–783

    PubMed  CAS  Google Scholar 

  264. Xiong YQ, LI Y, Abdel Hady W et al (2008) Efficacy of oritavancin (ORI), a lipoglycopeptide antibiotic,in a rat Staphylococcus aureus endocarditis (IE) model:microbiological and bioluminescent assessments. In: Abstract B-1011, 48th interscience conference on antimicrobial agents and chemotherapy (ICAAC)/46th annual meeting of the Infectious Diseases Society of America (IDSA), Washington, DC, 25–28 Oct 2008

    Google Scholar 

  265. Xiong YQ, LI Y, Hady WA, Moeck G, Parr TRJ, Lehoux D, Bayer AS (2009) Efficacy of oritavancin (ORI) in a murine Staphylococcus aureus (SA) subcutaneous biofilm infection model: microbiologic and real-time bioluminescent assessments. In: Abstract B-1315, 49th interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, 12–15 Sept 2009

    Google Scholar 

  266. Yenice I, Calis S, Atilla B et al (2003) In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. J Microencapsul 20(6):705–717

    PubMed  CAS  Google Scholar 

  267. Yin LY, Calhoun JH, Thomas TS et al (2009) Efficacy of telavancin in the treatment of ­methicillin-resistant Staphylococcus aureus osteomyelitis: studies with a rabbit model. J Antimicrob Chemother 63(2):357–360

    PubMed  CAS  Google Scholar 

  268. Young GP, Ward PB, Bayley N et al (1985) Antibiotic-associated colitis due to Clostridium difficile: double-blind comparison of vancomycin with bacitracin. Gastroenterology 89(5):1038–1045

    PubMed  CAS  Google Scholar 

  269. Zanolo G, Bernareggi A, Cavenaghi L et al (1991) Distribution and excretion of teicoplanin in rats after single and repeated intravenous administration. Eur J Drug Metab Pharmacokinet 3:85–93

    Google Scholar 

  270. Zhanel GG, Trapp S, Gin AS et al (2008) Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of gram-positive infections. Expert Rev Anti Infect Ther 6(1):67–81

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Arhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arhin, F.F., Belley, A., Far, A.R., Lehoux, D., Moeck, G., Parr, T.R. (2012). Glycopeptides and Lipoglycopeptides. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_9

Download citation

Publish with us

Policies and ethics