Skip to main content

Macrolides and Ketolides

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

The macrolides and ketolides represent a class of antibacterial agents with activities against most Gram-positive and selected Gram-negative as well as atypical pathogens including penicillin-resistant microorganisms. Erythromycin, clarithromycin, and azithromycin, the most extensively used macrolides in North America, and the only approved ketolide telithromycin have demonstrated efficacy and safety in a variety of clinical conditions and have been approved for use in both upper and lower-respiratory tract infections as well as skin and skin structure and genital infections. The introduction of clarithromycin and azithromycin provided the medical community with macrolide agents with not only increased pathogen coverage but also a significant improvement in adverse event profile when compared with the first macrolide agent, erythromycin. However, the global increase in macrolide-resistant Streptococcus pneumoniae is limiting their use. The ketolide telithromycin has great promise with efficacy to treat multidrug-resistant S. pneumoniae but its use has been significantly limited due to a number of serious safety issues which have surfaced since approval. Cethromycin is the only ketolide in late stage development. This chapter will provide a comprehensive review of these agents regarding the following aspects: in vitro antibacterial activity, mechanism of action, mechanism of resistance, pharmacokinetic and pharmacodynamic profile, clinical use, and safety issues. Future directions and challenges for the discovery and development of new macrolides and ketolides are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doern GV (2006) Macrolide and ketolide resistance with Streptococcus pneumoniae. Med Clin North Am 90:1109–1124

    PubMed  CAS  Google Scholar 

  2. Van Bambeke F, Reinert RR, Appelbaum PC, Tulkens PM, Peetermans WE (2007) Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 67:2355–2382

    PubMed  Google Scholar 

  3. Mcguire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  4. Cachet T, Van der Mooter G, Hauchecorne R, Vinckier C, Hoogmartens J (1989) Decompo­sition kinetics of erythromycin A in acidic aqueous solutions. Int J Pharm 55:59–65

    CAS  Google Scholar 

  5. Morimoto S, Takahashi Y, Watanabe Y, Omura S (1984) Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J Antibiot (Tokyo) 37:187–189

    CAS  Google Scholar 

  6. Peters DH, Clissold SP (1992) Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs 44:117–164

    PubMed  CAS  Google Scholar 

  7. Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G, Borovoy R, Brennan L, Mason R (1987) Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against Gram-negative organisms. Antimicrob Agents Chemother 31:1939–1947

    PubMed  CAS  Google Scholar 

  8. Peters DH, Friedel HA, McTavish D (1992) Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 44:750–799

    PubMed  CAS  Google Scholar 

  9. Denis A, Agouridas C, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, D’Ambrières SG, Lachaud S, Laurin P, Le Martret O, Loyau V, Tessot N, Pejac JM, Perron S (1999) Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg Med Chem Lett 9:3075–3080

    PubMed  CAS  Google Scholar 

  10. Reinert RR (2004) Clinical efficacy of ketolides in the treatment of respiratory tract infections. J Antimicrob Chemother 53:918–927

    PubMed  CAS  Google Scholar 

  11. Ma Z, Clark RF, Brazzale A, Wang S, Rupp MJ, Li L, Griesgraber G, Zhang S, Yong H, Phan LT, Nemoto PA, Chu DT, Plattner JJ, Zhang X, Zhong P, Cao Z, Nilius AM, Shortridge VD, Flamm R, Mitten M, Meulbroek J, Ewing P, Alder J, Or YS (2001) Novel erythromycin derivatives with aryl groups tethered to the C-6 position are potent protein synthesis inhibitors and active against multidrug-resistant respiratory pathogens. J Med Chem 44:4137–56

    PubMed  CAS  Google Scholar 

  12. Lawrence LE (2001) ABT-773 Abbott Laboratories. Curr Opin Investig Drugs 2:766–772

    PubMed  CAS  Google Scholar 

  13. Adis R&D Profile (2007) Cethromycin. Drugs R&D 8:95–102

    Google Scholar 

  14. Bryskier A (2000) Ketolide – telithromycin, an example of a new class of antibacterial agents. Clin Microbiol Infect 6:661–669

    PubMed  CAS  Google Scholar 

  15. Nilius AM, Ma Z (2002) Ketolides: the future of the macrolides? Curr Opin Pharmacol 2:493–500

    PubMed  CAS  Google Scholar 

  16. Mason EO Jr, Lamberth LB, Wald ER, Bradley JS, Barson WJ, Kaplan SL (2003) In vitro activities of cethromycin (ABT-773), a new ketolide, against Streptococcus pneumoniae strains that are not susceptible to penicillin or macrolides. Antimicrob Agents Chemother 47:166–169

    PubMed  CAS  Google Scholar 

  17. Shortridge VD, Zhong P, Cao Z, Beyer JM, Almer LS, Ramer NC, Doktor SZ, Flamm RK (2002) Comparison of in vitro activities of ABT-773 and telithromycin against macrolide-susceptible and -resistant streptococci and staphylococci. Antimicrob Agents Chemother 46:783–786

    PubMed  CAS  Google Scholar 

  18. Jenkins SG, Brown SD, Farrell DJ (2008) Trends in antibacterial resistance among Streptococcus pneumoniae isolated in the USA: update from PROTEKT US Years 1–4. Ann Clin Microbiol Antimicrob 7:1. doi:10.1186/1476-0711-7-1

    PubMed  Google Scholar 

  19. Schmitz FJ, Schwarz S, Milatovic D, Verhoef J, Fluit AC (2002) In vitro activities of the ketolides ABT-773 and telithromycin and of three macrolides against genetically characterized isolates of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis. J Antimicrob Chemother 50:145–148

    PubMed  CAS  Google Scholar 

  20. Casellas JM, Tomé G, Visser M, Gliosca L (2002) In vitro activity of the new ketolide ABT-773 against community acquired respiratory tract isolates and viridans streptococci. Diagn Microbiol Infect Dis 42:107–112

    PubMed  CAS  Google Scholar 

  21. Almer L, Nilius A, Beyer J, Meulbrook J, Mitten M, Flamm R (2000) The in vitro and in vivo activity of ABT-773 against fluoroquinolone-resistant S. pneumoniae. 40th Interscience ­conference on antimicrobial agents and chemotherapy, Toronto, Ontario, Canada, September 17–20. Poster No. 2136

    Google Scholar 

  22. Dubois J, St -Pierre C (2001) In vitro activity of ABT-773 versus macrolides and quinolones against resistant respiratory tract pathogens. Diagn Microbiol Infect Dis 40:35–40

    PubMed  CAS  Google Scholar 

  23. Andrews JM, Weller TM, Ashby JP, Walker RM, Wise R (2000) The in vitro activity of ABT773, a new ketolide antimicrobial agent. J Antimicrob Chemother 46:1017–1022

    PubMed  CAS  Google Scholar 

  24. von Eiff C, Peters G (2002) Comparative in vitro activity of ABT-773 and two macrolides against staphylococci. J Antimicrob Chemother 49:189–192

    Google Scholar 

  25. Singh KV, Malathum K, Murray BE (2001) In vitro activities of a new ketolide, ABT-773, against multidrug-resistant Gram-positive cocci. Antimicrob Agents Chemother 45:3640–3643

    PubMed  CAS  Google Scholar 

  26. Henwood CJ, Livermore DM, Johnson AP, James D, Warner M, Gardiner A, and the Linezolid Study Group (2000) Susceptibility of Gram-positive cocci from 25 UK hospitals to antimicrobial agents including linezolid. J Antimicrob Chemother 46:931–940

    Google Scholar 

  27. Barry AL, Fuchs PC, Brown SD (2001) In vitro activity of the ketolide ABT-773. Antimicrob Agents Chemother 45:2922–2924

    PubMed  CAS  Google Scholar 

  28. Luna VA, Xu ZQ, Eiznhamer DA, Cannons AC, Cattani J (2008) Susceptibility of 170 ­isolates of the USA300 clone of MRSA to macrolides, clindamycin and the novel ketolide cethromycin. J Antimicrob Chemother 62:639–640

    PubMed  CAS  Google Scholar 

  29. Jones RN, Biedenbach DJ (1997) Antimicrobial activity of RU-66647, a new ketolide. Diagn Microbiol Infect Dis 27:7–12

    PubMed  CAS  Google Scholar 

  30. Morosini MI, Cantón R, Loza E, del Campo R, Almaraz F, Baquero F (2003) Streptococcus pyogenes isolates with characterized macrolide resistance mechanisms in Spain: in vitro activities of telithromycin and cethromycin. J Antimicrob Chemother 52:50–55

    PubMed  CAS  Google Scholar 

  31. Nilius AM, Bui MH, Almer L, Hensey-Rudloff D, Beyer J, Ma Z, Or YS, Flamm RK (2001) Comparative in vitro activity of ABT-773, a novel antibacterial ketolide. Antimicrob Agents Chemother 45:2163–2168

    PubMed  CAS  Google Scholar 

  32. Goldstein EJ, Citron DM, Merriam CV, Warren Y, Tyrrell K (2000) Comparative in vitro activities of ABT-773 against aerobic and anaerobic pathogens isolated from skin and soft-tissue animal and human bite wound infections. Antimicrob Agents Chemother 44: 2525–2529

    PubMed  CAS  Google Scholar 

  33. Brueggemann AB, Doern GV, Huynh HK, Wingert EM, Rhomberg PR (2000) In vitro activity of ABT-773, a new ketolide, against recent clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother 44: 447–449

    PubMed  CAS  Google Scholar 

  34. Davies TA, Ednie LM, Hoellman DM, Pankuch GA, Jacobs MR, Appelbaum PC (2000) Antipneumococcal activity of ABT-773 compared to those of 10 other agents. Antimicrob Agents Chemother 44:1894–1899

    PubMed  CAS  Google Scholar 

  35. Johnson CN, Benjamin WH Jr, Gray BM, Crain MC, Edwards KM, Waites KB (2001) In vitro activity of ABT-773, telithromycin and eight other antimicrobials against erythromycin-resistant Streptococcus pneumoniae respiratory isolates of children. Int J Antimicrob Agents 18:531–535

    PubMed  CAS  Google Scholar 

  36. Matic V, Kosowska K, Bozdogan B, Kelly LM, Smith K, Ednie LM, Lin G, Credito KL, Clark CL, McGhee P, Pankuch GA, Jacobs MR, Appelbaum PC (2004) Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin. Antimicrob Agents Chemother 48:4103–4112

    PubMed  CAS  Google Scholar 

  37. Betriu C, Redondo M, Boloix A, Gómez M, Culebras E, Picazo JJ (2001) Comparative activity of linezolid and other new agents against methicillin-resistant Staphylococcus aureus and teicoplanin-intermediate coagulase-negative staphylococci. J Antimicrob Chemother 48: 911–913

    PubMed  CAS  Google Scholar 

  38. Giovanetti E, Montanari MP, Marchetti F, Varaldo PE (2000) In vitro activity of ketolides telithromycin and HMR 3004 against Italian isolates of Streptococcus pyogenes and Streptococcus pneumoniae with different erythromycin susceptibility. J Antimicrob Chemother 46:905–908

    PubMed  CAS  Google Scholar 

  39. Jalava J, Kataja J, Seppälä H, Huovinen P (2001) In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species. Antimicrob Agents Chemother 45:789–793

    PubMed  CAS  Google Scholar 

  40. Malathum K, Coque TM, Singh KV, Murray BE (1999) In vitro activities of two ketolides, HMR 3647 and HMR 3004, against Gram-positive bacteria. Antimicrob Agents Chemother 43:930–936

    PubMed  CAS  Google Scholar 

  41. Alcaide F, Benítez MA, Carratalà J, Gudiol F, Liñares J, Martín R (2001) In vitro activities of the new ketolide HMR 3647 (telithromycin) in comparison with those of eight other antibiotics against viridans group streptococci isolated from blood of neutropenic patients with cancer. Antimicrob Agents Chemother 45:624–626

    PubMed  CAS  Google Scholar 

  42. Alcaide F, Carratala J, Liñares J, Gudiol F, Martin R (1996) In vitro activities of eight macrolide antibiotics and RP-59500 (quinupristin-dalfopristin) against viridans group streptococci isolated from blood of neutropenic cancer patients. Antimicrob Agents Chemother 40:2117–2120

    PubMed  CAS  Google Scholar 

  43. Baltch AL, Smith RP, Ritz WJ, Bopp LH (2001) Inhibitory and bactericidal effects of telithromycin (HMR 3647, RU 56647) and five comparative antibiotics, used singly and in combination, against vancomycin-resistant and vancomycin-susceptible enterococci. Chemotherapy 47:250–260

    PubMed  CAS  Google Scholar 

  44. Schouten MA, Hoogkamp-Korstanje JA (1997) Comparative in-vitro activities of quinupristin-dalfopristin against Gram-positive bloodstream isolates. J Antimicrob Chemother 40: 213–219

    PubMed  CAS  Google Scholar 

  45. Hoellman DB, Lin G, Jacobs MR, Appelbaum PC (1999) Activity of HMR 3647 compared to those of six compounds against 235 strains of Enterococcus faecalis. Antimicrob Agents Chemother 43:166–168

    PubMed  CAS  Google Scholar 

  46. Torres C, Zarazaga M, Tenorio C, Portillo A, Saenz Y, Ruiz F, Baquero F (1998) In vitro activity of the new ketolide HMR3647 in comparison with those of macrolides and pristinamycins against Enterococcus spp. Antimicrob Agents Chemother 42:3279–3281

    PubMed  CAS  Google Scholar 

  47. Martínez-Martínez L, Pascual A, Suárez AI, Perea EJ (1998) In vitro activities of ketolide HMR 3647, macrolides, and clindamycin against Coryneform bacteria. Antimicrob Agents Chemother 42:3290–3292

    PubMed  Google Scholar 

  48. Goldstein EJ, Citron DM, Hunt Gerardo S, Hudspeth M, Merriam CV (1998) Activities of HMR 3004 (RU 64004) and HMR 3647 (RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and eight other antimicrobial agents against unusual aerobic and anaerobic human and animal bite pathogens isolated from skin and soft tissue infections in humans. Antimicrob Agents Chemother 42:1127–1132

    PubMed  CAS  Google Scholar 

  49. Zhanel GG, Palatnick L, Nichol KA, Low DE, Hoban DJ, CROSS Study Group (2003) Antimicrobial resistance in Haemophilus influenzae and Moraxella catarrhalis respiratory tract isolates: results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob Agents Chemother 47:1875–1881

    PubMed  CAS  Google Scholar 

  50. Barry AL, Fuchs PC, Brown SD (1998) In vitro activities of the ketolide HMR 3647 against recent Gram-positive clinical isolates and Haemophilus influenzae. Antimicrob Agents Chemother 42:2138–2140

    PubMed  CAS  Google Scholar 

  51. Lascols C, Bryskier A, Soussy CJ, Tanković J (2001) Effect of pH on the susceptibility of Helicobacter pylori to the ketolide telithromycin (HMR 3647) and clarithromycin. J Antimicrob Chemother 48:738–740

    PubMed  CAS  Google Scholar 

  52. Jorgensen JH, Crawford SA, Fiebelkorn KR (2005) Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents. J Clin Microbiol 43:3162–3171

    PubMed  CAS  Google Scholar 

  53. Hoppe JE, Bryskier A (1998) In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampin and rifapentine). Antimicrob Agents Chemother 42:965–966

    PubMed  CAS  Google Scholar 

  54. Citron DM, Appleman MD (2001) Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria. Antimicrob Agents Chemother 45:345–348

    PubMed  CAS  Google Scholar 

  55. Hecht DW, Osmolski JR, Xu ZQ, English ML, Eiznhamer DA, Flavin MT (2008) In vitro activity of cethromycin (CER) against toxigenic Clostridium difficile clinical isolates. 48th Interscience conference on antimicrobial agents and chemotherapy/45th Annual meeting of the Infectious Diseases Society of America, Washington, DC; October 25–28. Abstract No. 3436

    Google Scholar 

  56. Sillerström E, Wahlund E, Nord CE (2000) In vitro activity of ABT-773 against anaerobic bacteria. Eur J Clin Microbiol Infect Dis 19:635–637

    PubMed  Google Scholar 

  57. Strigl S, Roblin PM, Reznik T, Hammerschlag MR (2000) In vitro activity of ABT 773, a new ketolide antibiotic, against Chlamydia pneumoniae. Antimicrob Agents Chemother 44: 1112–1113

    PubMed  CAS  Google Scholar 

  58. Waites KB, Crabb DM, Duffy LB (2003) In vitro activities of ABT-773 and other antimicrobials against human mycoplasmas. Antimicrob Agents Chemother 47:39–42

    PubMed  CAS  Google Scholar 

  59. Stout JE, Sens K, Mietzner S, Obman A, Yu VL (2005) Comparative activity of quinolones, macrolides and ketolides against Legionella species using in vitro broth dilution and intracellular susceptibility testing. Int J Antimicrob Agents 25:302–307

    PubMed  CAS  Google Scholar 

  60. Bebear CM, Renaudin H, Bryskier A, Bebear C (2000) Comparative activities of telithromycin (HMR 3647), levofloxacin, and other antimicrobial agents against human mycoplasmas. Antimicrob Agents Chemother 44:1980–1982

    PubMed  CAS  Google Scholar 

  61. Douthwaite S, Champney WS (2001) Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J Antimicrob Chemother 48(Suppl T1):1–8

    PubMed  CAS  Google Scholar 

  62. Champney WS, Tober CL (2001) Structure-activity relationships for six ketolide antibiotics. Curr Microbiol 42:203–210

    PubMed  CAS  Google Scholar 

  63. Champney WS, Pelt J (2002) The ketolide antibiotic ABT-773 is a specific inhibitor of translation and 50 S ribosomal subunit formation in Streptococcus pneumoniae cells. Curr Microbiol 45:155–160

    PubMed  CAS  Google Scholar 

  64. Champney WS, Pelt J (2002) Telithromycin inhibition of protein synthesis and 50 S ribosomal subunit formation in Streptococcus pneumoniae cells. Curr Microbiol 45:328–333

    PubMed  CAS  Google Scholar 

  65. Champney WS, Tober CL (2003) Preferential inhibition of protein synthesis by ketolide antibiotics in Haemophilus influenzae cells. Curr Microbiol 46:103–108

    PubMed  CAS  Google Scholar 

  66. Champney WS, Miller M (2002) Inhibition of 50 S ribosomal subunit assembly in Haemophilus influenzae cells by azithromycin and erythromycin. Curr Microbiol 44: 418–424

    PubMed  CAS  Google Scholar 

  67. Cao Z, Zhong P, Ruan X, Merta P, Capobianco JO, Flamm RK, Nilius AM (2004) Ribosome affinity and the prolonged molecular postantibiotic effect of cethromycin (ABT-773) in Haemophilus influenzae. Int J Antimicrob Agents 24:362–368

    PubMed  CAS  Google Scholar 

  68. Capobianco JO, Cao Z, Shortridge VD, Ma Z, Flamm RK, Zhong P (2000) Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob Agents Chemother 44:1562–1567

    PubMed  CAS  Google Scholar 

  69. Douthwaite S, Hansen LH, Mauvais P (2000) Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23 S rRNA. Mol Microbiol 36:183–193

    PubMed  CAS  Google Scholar 

  70. Hansen LH, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23 S ribosomal RNA. Mol Microbiol 31: 623–631

    PubMed  CAS  Google Scholar 

  71. Garza-Ramos G, Xiong L, Zhong P, Mankin A (2001) Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacteriol 183:6898–6907

    PubMed  CAS  Google Scholar 

  72. Champney WS (2001) Bacterial ribosomal subunit synthesis: a novel antibiotic target. Curr Drug Targets – Infect Disord 1:19–36

    PubMed  CAS  Google Scholar 

  73. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821

    PubMed  Google Scholar 

  74. Schlünzen F, Harms JM, Franceschi F, Hansen HA, Bartels H, Zarivach R, Yonath A (2003) Structural basis for the antibiotic activity of ketolides and azalides. Structure 11:329–338

    PubMed  Google Scholar 

  75. Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HA, Fucini P, Yonath A (2003) Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol 185:4276–4279

    PubMed  CAS  Google Scholar 

  76. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    PubMed  CAS  Google Scholar 

  77. Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121: 257–270

    PubMed  CAS  Google Scholar 

  78. Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577–585

    PubMed  CAS  Google Scholar 

  79. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830

    PubMed  CAS  Google Scholar 

  80. Weisblum B (1995) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39:797–805

    PubMed  CAS  Google Scholar 

  81. Varaldo PE, Montanari MP, Giovanetti E, Varaldo PE, Montanari MP, Giovanetti E (2009) Genetic elements responsible for erythromycin resistance in streptococci. Antimicrob Agents Chemother 53:343–353

    PubMed  CAS  Google Scholar 

  82. Franceschi F, Kanyo Z, Sherer EC, Sutcliffe J (2004) Macrolide resistance from the ribosome perspective. Curr Drug Targets Infect Disord 4:177–191

    PubMed  CAS  Google Scholar 

  83. Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R (2002) Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 46:125–131

    PubMed  CAS  Google Scholar 

  84. Klaassen CH, Mouton JW (2005) Molecular detection of the macrolide efflux gene: to discriminate or not to discriminate between mef(A) and mef(E). Antimicrob Agents Chemother 49:1271–1278

    PubMed  CAS  Google Scholar 

  85. Pozzi G, Iannelli F, Oggioni MR, Santagati M, Stefani S (2004) Genetic elements carrying macrolide efflux genes in streptococci. Curr Drug Targets Infect Disord 4:203–206

    PubMed  CAS  Google Scholar 

  86. Bonnefoy A, Girard AM, Agouridas C, Chantot JF (1997) Ketolides lack inducibility properties of MLSB resistance phenotype. J Antimicrob Chemother 40:85–90

    PubMed  CAS  Google Scholar 

  87. Leclercq R (2001) Safeguarding future antimicrobial options: strategies to minimize resistance. Clin Microbiol Infect 7(Suppl 3):18–23

    PubMed  Google Scholar 

  88. Bailey M, Chettiath T, Mankin AS (2008) Induction of erm(C) expression by noninducing antibiotics. Antimicrob Agents Chemother 52:866–874

    PubMed  CAS  Google Scholar 

  89. Hisanaga T, Hoban DJ, Zhanel GG (2005) Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. J Antimicrob Chemother 56:447–450

    PubMed  CAS  Google Scholar 

  90. Reinert RR, van der Linden M, Al-Lahham A (2005) Molecular characterization of the first telithromycin-resistant Streptococcus pneumoniae isolate in Germany. Antimicrob Agents Chemother 49:3520–3522

    PubMed  CAS  Google Scholar 

  91. Berisio R, Corti N, Pfister P, Yonath A, Böttger EC (2006) 23 S rRNA 2058A–  >  G alteration mediates ketolide resistance in combination with deletion in L22. Antimicrob Agents Chemother 50:3816–3823

    PubMed  CAS  Google Scholar 

  92. Wolter N, Smith AM, Low DE, Klugman KP (2007) High-level telithromycin resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 51:1092–1095

    PubMed  CAS  Google Scholar 

  93. Wolter N, Smith AM, Farrell DJ, Northwood JB, Douthwaite S, Klugman KP (2008) Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases RNA methylation. Antimicrob Agents Chemother 52: 435–440

    PubMed  CAS  Google Scholar 

  94. Zhanel GG, Hisanaga T, Nichol K, Wierzbowski A, Hoban DJ (2003) Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae. Expert Opin Emerg Drugs 8:297–321

    PubMed  CAS  Google Scholar 

  95. Jain R, Danziger LH (2004) The macrolide antibiotics: a pharmacokinetic and pharmacodynamic overview. Curr Pharm Des 10:3045–3053

    PubMed  CAS  Google Scholar 

  96. Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, Karlowsky JA (2001) Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 61: 443–498

    PubMed  CAS  Google Scholar 

  97. Westphal JF (2000) Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 50:285–295

    PubMed  CAS  Google Scholar 

  98. McConnell SA, Amsden GW (1999) Review and comparison of advanced-generation macrolides clarithromycin and dirithromycin. Pharmacotherapy 19:404–415

    PubMed  CAS  Google Scholar 

  99. Chu S, Wilson DS, Deaton RL, Mackenthun AV, Eason CN, Cavanaugh JH (1993) Single- and multiple-dose pharmacokinetics of clarithromycin, a new macrolide antimicrobial. J Clin Pharmacol 33:719–726

    PubMed  CAS  Google Scholar 

  100. Guay DR, Gustavson LE, Devcich KJ, Zhang J, Cao G, Olson CA (2001) Pharmacokinetics and tolerability of extended-release clarithromycin. Clin Ther 23:566–577

    PubMed  CAS  Google Scholar 

  101. Williams KN, Bishai WR (2005) Clarithromycin extended-release in community-acquired respiratory tract infections. Expert Opin Pharmacother 6:2867–2876

    PubMed  CAS  Google Scholar 

  102. Di Paolo A, Barbara C, Chella A, Angeletti CA, Del Tacca M (2002) Pharmacokinetics of azithromycin in lung tissue, bronchial washing, and plasma in patients given multiple oral doses of 500 and 1000 mg daily. Pharmacol Res 46:545–550

    PubMed  Google Scholar 

  103. Amsden GW, Nafziger AN, Foulds G (1999) Pharmacokinetics in serum and leukocyte exposures of oral azithromycin, 1,500 milligrams, given over a 3- or 5-day period in healthy ­subjects. Antimicrob Agents Chemother 43:163–165

    PubMed  CAS  Google Scholar 

  104. Blasi F, Cazzola M, Tarsia P, Cosentini R, Aliberti S, Santus P, Allegra L (2005) Azithromycin and lower respiratory tract infections. Expert Opin Pharmacother 6:2335–2351

    PubMed  CAS  Google Scholar 

  105. Namour F, Wessels DH, Pascual MH, Reynolds D, Sultan E, Lenfant B (2001) Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob Agents Chemother 45:170–175

    PubMed  CAS  Google Scholar 

  106. Pradhan RS, Gustavson LE, Londo DD, Zhang Y, Zhang J, Paris MM (2000) Single oral dose pharmacokinetics and safety of ABT-773 in healthy subjects. 40th Interscience conference on antimicrobial agents and chemotherapy, Toronto, Canada, September 17–20. Abstract No. 2135

    Google Scholar 

  107. Fredericks CE, Morganroth J, English ML, Milanesio NA, Rohowsky N, Xu ZQ, Flavin MT, Eiznhamer DA (2008) A thorough QT study to define the ECG effects of cethromycin (CER) using a clinical and a supratherapeutic dose compared to placebo and moxifloxacin (MFX) in healthy subjects (CL07-001). 48th Interscience conference on antimicrobial agents and chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract No. A-3561

    Google Scholar 

  108. Pradhan RS, Gustavson LE, Londo DD, Zhang Y, Zhang J, Paris MM (2000) Bioavailability of ABT-773 is unaffected by food. 40th Interscience conference on antimicrobial agents and chemotherapy, Toronto, Canada, September 17–20. Abstract No. 2138

    Google Scholar 

  109. Bukofzer S, Gustavson L, Eiznhamer DA, Xu ZQ, Jenta TRJ, Leski ML, Flavin MT (2007) Safety and pharmacokinetics of cethromycin following administration of single and multiple doses to subjects with mild and moderate chronic hepatic insufficiency. 47th Interscience conference on antimicrobial agents and chemotherapy, Chicago, Illinois, September 17–20. Abstract No. A-796

    Google Scholar 

  110. Bukofzer S, Gustavson L, Eiznhamer DA, Xu ZQ, Jenta TRJ, Leski ML, Flavin MT (2007) Safety and pharmacokinetics of cethromycin following administration of single and multiple doses to subjects with severe renal impairment. 47th Interscience conference on antimicrobial agents and chemotherapy, Chicago, Illinois, September 17–20. Abstract No. A-797

    Google Scholar 

  111. Zeitlinger M, Wagner CC, Heinisch B (2009) Ketolides – the modern relatives of macrolides: the pharmacokinetic perspective. Clin Pharmacokinet 48:23–38

    PubMed  CAS  Google Scholar 

  112. Kiem S, Schentag JJ (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 52:24–36

    PubMed  CAS  Google Scholar 

  113. Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E (1995) Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother 39: 334–338

    PubMed  CAS  Google Scholar 

  114. Rodvold KA, Gotfried MH, Danziger LH, Servi RJ (1997) Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob Agents Chemother 41:1399–1402

    PubMed  CAS  Google Scholar 

  115. Khair OA, Andrews JM, Honeybourne D, Jevons G, Vacheron F, Wise R (2001) Lung concentrations of telithromycin after oral dosing. J Antimicrob Chemother 47:837–840

    PubMed  CAS  Google Scholar 

  116. Muller-Serieys C, Soler P, Cantalloube C, Lemaitre F, Gia HP, Brunner F, Andremont A (2001) Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother 45:3104–3108

    PubMed  CAS  Google Scholar 

  117. Conte JE Jr, Golden JA, Kipps J, Zurlinden E (2004) Steady-state plasma and intrapulmonary pharmacokinetics and pharmacodynamics of cethromycin. Antimicrob Agents Chemother 48:3508–3515

    PubMed  CAS  Google Scholar 

  118. Labro MT, Abdelghaffar H, Babin-Chevaye C (2004) Interaction of the new ketolide ABT-773 (cethromycin) with human polymorphonuclear neutrophils and the phagocytic cell line PLB-985 in vitro. Antimicrob Agents Chemother 48:1096–1104

    PubMed  CAS  Google Scholar 

  119. García I, Pascula A, Ballesta S, del Castillo C, Perea EJ (2003) Accumulation and activity of cethromycin (ABT-773) within human polymorphonuclear leucocytes. J Antimicrob Chemother 52:24–28

    PubMed  Google Scholar 

  120. Bosnar M, Kelnerić Z, Munić V, Eraković V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377

    PubMed  CAS  Google Scholar 

  121. Maglio D, Nicolau DP, Nightingale CH (2003) Impact of pharmacodynamics on dosing of macrolides, azalides, and ketolides. Infect Dis Clin North Am 17:563–577

    PubMed  Google Scholar 

  122. den Hollander JG, Knudsen JD, Mouton JW, Fuursted K, Frimodt-Møller N, Verbrugh HA, Espersen F (1998) Comparison of pharmacodynamics of azithromycin and erythromycin in vitro and in vivo. Antimicrob Agents Chemother 42:377–382

    Google Scholar 

  123. Novelli A, Fallani S, Cassetta MI, Arrigucci S, Mazzei T (2002) In vivo pharmacodynamic evaluation of clarithromycin in comparison to erythromycin. J Chemother 14:584–590

    PubMed  CAS  Google Scholar 

  124. Drusano GL, Craig WA (1997) Relevance of pharmacokinetics and pharmacodynamics in the selection of antibiotics for respiratory tract infections. J Chemother 9(Suppl 3):38–44

    PubMed  CAS  Google Scholar 

  125. Tessier PR, Kim MK, Zhou W, Xuan D, Li C, Ye M, Nightingale CH, Nicolau DP (2002) Pharmacodynamic assessment of clarithromycin in a murine model of pneumococcal pneumonia. Antimicrob Agents Chemother 46:1425–1434

    PubMed  CAS  Google Scholar 

  126. Tessier PR, Mattoes HM, Dandekar PK, Nightingale CH, Nicolau DP (2005) Pharmacodynamic profile of telithromycin against macrolide- and fluoroquinolone-resistant Streptococcus pneumoniae in a neutropenic mouse thigh model. Antimicrob Agents Chemother 49:188–194

    PubMed  CAS  Google Scholar 

  127. Kim MK, Zhou W, Tessier PR, Xuan D, Ye M, Nightingale CH, Nicolau DP (2002) Bactericidal effect and pharmacodynamics of cethromycin (ABT-773) in a murine pneumococcal pneumonia model. Antimicrob Agents Chemother 46:3185–3192

    PubMed  CAS  Google Scholar 

  128. Capitano B, Maglio D, Banevicius MA, Nightingale CH, Nicolau DP (2003) Bactericidal effect of cethromycin (ABT-773) in an immunocompetent murine pneumococcal pneumonia model. Int J Antimicrob Agents 22:588–593

    PubMed  CAS  Google Scholar 

  129. Andes DR, Craig WA (2000) In vivo pharmacodynamics of ABT-773, a new ketolide antibiotic. 40th Interscience conference on antimicrobial agents and chemotherapy, Toronto, Canada, September 17–20. Abstract No. 2139

    Google Scholar 

  130. Craig WA, Andes DR (2000) Difference in the in vivo pharmacodynamics of telithromycin and azithromycin against Streptococcus pneumoniae. 40th Interscience conference on antimicrobial agents and chemotherapy, Toronto, Canada, September 17–20. Abstract No. 2141

    Google Scholar 

  131. Munckhof WJ, Borlace G, Turnidge JD (2000) Postantibiotic suppression of growth of erythromycin A-susceptible and -resistant Gram-positive bacteria by the ketolides telithromycin (HMR 3647) and HMR 3004. Antimicrob Agents Chemother 44:1749–1753

    PubMed  CAS  Google Scholar 

  132. Odenholt I, Löwdin E, Cars O (2001) Pharmacodynamics of telithromycin in vitro against respiratory tract pathogens. Antimicrob Agents Chemother 45:23–29

    PubMed  CAS  Google Scholar 

  133. Neuhauser MM, Prause JL, Danziger LH, Pendland SL (2001) Postantibiotic effects of ABT-773 and amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae. Antimicrob Agents Chemother 45:3613–3615

    PubMed  CAS  Google Scholar 

  134. Credito KL, Lin G, Pankuch GA, Bajaksouzian S, Jacobs MR, Appelbaum PC (2001) Susceptibilities of Haemophilus influenzae and Moraxella catarrhalis to ABT-773 compared to their susceptibilities to 11 other agents. Antimicrob Agents Chemother 45:67–72

    PubMed  CAS  Google Scholar 

  135. Pendland SL, Neuhauser MM, Prause JL (2002) In vitro bactericidal activity and post-antibiotic effect of ABT-773 versus co-amoxiclav against anaerobes. J Antimicrob Chemother 49: 879–881

    PubMed  CAS  Google Scholar 

  136. Product Information (2009) Zithromax®, (azithromycin tablets) and (azithromycin for oral suspension). Pfizer Labs, New York, NY, (PI revised January, 2009)

    Google Scholar 

  137. Product Information (2008) Biaxin® Filmtab® (clarithromycin tablets, USP), Biaxin® XL Filmtab® (clarithromycin extended-release tablets) Biaxin® Granules (clarithromycin for oral suspension, USP) Abbott Laboratories, North Chicago, IL, (PI revised October, 2008)

    Google Scholar 

  138. Product Information (2004) Ery-Tab®, (erythromycin delayed-release tablets, USP), Enteric-coated. Abbott Laboratories, North Chicago, IL, (PI revised November, 2004)

    Google Scholar 

  139. Product Information (2008) Ery-Ped®, (erythromycin ethylsuccinate, USP). Abbott Laboratories, North Chicago, IL, (PI revised November, 2008)

    Google Scholar 

  140. Product Information (2008) Zmax®, (azithromycin extended release) for oral suspension. Pfizer Labs, New York, NY, (PI revised October, 2008)

    Google Scholar 

  141. Product Information (2007) Zithromax®, (azithromycin for injection) For IV infusion only. Pfizer Labs, New York, NY, (PI revised August, 2007)

    Google Scholar 

  142. Product Information (2007) Ketek®, (telithromycin) Tablets. sanofi-aventis U.S. LLC, Bridgewater, NJ, (PI revised February, 2007)

    Google Scholar 

  143. Milanesio NA, English ML, Fredericks CE, Rohowsky N, Xu ZQ, Flavin MT, Eiznhamer DA (2008) A comparative study of the safety and efficacy of cethromycin (CER) to clarithromycin (CLR) for the treatment of community acquired pneumonia (CAP) in adults (CL05-001). 48th Interscience conference on antimicrobial agents and chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract No. L-683

    Google Scholar 

  144. Product Information (1998) Erythromycin topical gel USP, 2%. E. Fougera & Co., Melville, NY, (PI revised November, 1998)

    Google Scholar 

  145. Grayston JT, Kuo CC, Wang SP, Altman J (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315:161–168

    PubMed  CAS  Google Scholar 

  146. Mussa FF, Chai H, Wang X, Yao Q, Lumsden AB, Chen C (2006) Chlamydia pneumoniae and vascular disease: an update. J Vasc Surg 43:1301–1307

    PubMed  Google Scholar 

  147. Ramirez JA (1996) Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med 12:979–982

    Google Scholar 

  148. Jackson LA, Campbell LA, Kuo CC, Rodriguez DI, Lee A, Grayston JT (1997) Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. J Infect Dis 176:292–295

    PubMed  CAS  Google Scholar 

  149. Parchure N, Zouridakis EG, Kaski JC (2002) Effect of azithromycin treatment on endothelial function in patients with coronary artery disease and evidence of Chlamydia pneumoniae infection. Circulation 105:1298–1303

    PubMed  CAS  Google Scholar 

  150. Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ (1997) Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 96:404–407

    PubMed  CAS  Google Scholar 

  151. O’Connor CM, Dunne MW, Pfeffer MA, Muhlestein JB, Yao L, Gupta S, Benner RJ, Fisher MR, Cook TD; Investigators in the WIZARD Study (2003) Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290:1459–1466

    Google Scholar 

  152. Grayston JT, Kronmal RA, Jackson LA, Parisi AF, Muhlestein JB, Cohen JD, Rogers WJ, Crouse JR, Borrowdale SL, Schron E, Knirsch C, Investigators ACES (2005) Azithromycin for the secondary prevention of coronary events. N Engl J Med 352:1637–1645

    PubMed  CAS  Google Scholar 

  153. Hoymans VY, Bosmans JM, Ieven MM, Vrints CJ (2007) Chlamydia pneumoniae-based atherosclerosis: a smoking gun. Acta Cardiol 62:565–571

    PubMed  Google Scholar 

  154. Watson C, Alp NJ (2008) Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond) 114:509–531

    CAS  Google Scholar 

  155. Esposito S, Blasi F, Arosio C, Fioravanti L, Fagetti L, Droghetti R, Tarsia P, Allegra L, Principi N (2000) Importance of acute Mycoplasma pneumoniae and Chlamydia pneumoniae infections in children with wheezing. Eur Respir J 16:1142–1146

    PubMed  CAS  Google Scholar 

  156. Lieberman D, Lieberman D, Printz S, Ben-Yaakov M, Lazarovich Z, Ohana B, Friedman MG, Dvoskin B, Leinonen M, Boldur I (2003) Atypical pathogen infection in adults with acute exacerbation of bronchial asthma. Am J Respir Crit Care Med 167:406–410

    PubMed  Google Scholar 

  157. Kraft M, Cassell GH, Pak J, Martin RJ (2002) Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 121:1782–1788

    PubMed  CAS  Google Scholar 

  158. Esposito S, Bosis S, Faelli N, Begliatti E, Droghetti R, Tremolati E, Porta A, Blasi F, Principi N (2005) Role of atypical bacteria and azithromycin therapy for children with recurrent respiratory tract infections. Pediatr Infect Dis J 24:438–444

    PubMed  Google Scholar 

  159. Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, Nieman RB, Investigators TELICAST (2006) The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 354: 1589–1600

    PubMed  CAS  Google Scholar 

  160. Chiodini RJ, Van Kruiningen HJ, Thayer WR, Merkal RS, Coutu JA (1984) Possible role of mycobacteria in inflammatory bowel disease. I. An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Dig Dis Sci 29:1073–1079

    PubMed  CAS  Google Scholar 

  161. Sanderson JD, Moss MT, Tizard ML, Hermon-Taylor J (1992) Mycobacterium paratuberculosis DNA in Crohn’s disease tissue. Gut 33:890–896

    PubMed  CAS  Google Scholar 

  162. Hulten K, El-Zimaity HM, Karttunen TJ, Almashhrawi A, Schwartz MR, Graham DY, El-Zaatari FA (2001) Detection of Mycobacterium avium subspecies paratuberculosis in Crohn’s diseased tissues by in situ hybridization. Am J Gastroenterol 96:1529–1535

    PubMed  CAS  Google Scholar 

  163. Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J (1997) Two-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J Antimicrob Chemother 39:393–400

    PubMed  CAS  Google Scholar 

  164. Shafran I, Kugler L, El-Zaatari FA, Naser SA, Sandoval J (2002) Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig Liver Dis 34:22–28

    PubMed  CAS  Google Scholar 

  165. Esterly NB, Furey NL, Flanagan LE (1978) The effect of antimicrobial agents on leukocyte chemotaxis. J Invest Dermatol 70:51–55

    PubMed  CAS  Google Scholar 

  166. Nelson S, Summer WR, Terry PB, Warr GA, Jakab GJ (1987) Erythromycin-induced ­suppression of pulmonary antibacterial defenses. A potential mechanism of superinfection in the lung. Am Rev Respir Dis 136:1207–1212

    PubMed  CAS  Google Scholar 

  167. Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP (2000) Erythromycin inhibits β2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 94:654–660

    PubMed  CAS  Google Scholar 

  168. Terao H, Asano K, Kanai K, Kyo Y, Watanabe S, Hisamitsu T, Suzaki H (2003) Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators Inflamm 12:195–202

    PubMed  CAS  Google Scholar 

  169. Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, Powers JC, Luisetti M (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 25:492–499

    PubMed  CAS  Google Scholar 

  170. Yamasawa H, Oshikawa K, Ohno S, Sugiyama Y (2004) Macrolides inhibit epithelial cell-mediated neutrophil survival by modulating granulocyte macrophage colony-stimulating factor release. Am J Respir Cell Mol Biol 30:569–575

    PubMed  CAS  Google Scholar 

  171. Miyazaki M, Zaitsu M, Honjo K, Ishii E, Hamasaki Y (2003) Macrolide antibiotics inhibit prostaglandin E2 synthesis and mRNA expression of prostaglandin synthetic enzymes in human leukocytes. Prostaglandins Leukot Essent Fatty Acids 69:229–235

    PubMed  CAS  Google Scholar 

  172. Ichiyama T, Nishikawa M, Yoshitomi T, Hasegawa S, Matsubara T, Hayashi T, Furukawa S (2001) Clarithromycin inhibits NF-κB activation in human peripheral blood mononuclear cells and pulmonary epithelial cells. Antimicrob Agents Chemother 45:44–47

    PubMed  CAS  Google Scholar 

  173. Schultz MJ (2004) Macrolide activities beyond their antimicrobial effects: macrolides in ­diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother 54:21–28

    PubMed  CAS  Google Scholar 

  174. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360: 978–984

    PubMed  CAS  Google Scholar 

  175. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216

    PubMed  CAS  Google Scholar 

  176. Takeoka K, Ichimiya T, Yamasaki T, Nasu M (1998) The in vitro effect of macrolides on the interaction of human polymorphonuclear leukocytes with Pseudomonas aeruginosa in biofilm. Chemotherapy 44:190–197

    PubMed  CAS  Google Scholar 

  177. Kawamura M, Arai Y, Tani M (2001) Improvement in right lung atelectasis (middle lobe syndrome) following administration of low-dose roxithromycin. Respiration 68:210–214

    PubMed  CAS  Google Scholar 

  178. Yazawa N, Ihn H, Yamane K, Etoh T, Tamaki K (2001) The successful treatment of prurigo pigmentosa with macrolide antibiotics. Dermatology 202:67–69

    PubMed  CAS  Google Scholar 

  179. Jang HS, Oh CK, Cha JH, Cho SH, Kwon KS (2001) Six cases of confluent and reticulated papillomatosis alleviated by various antibiotics. J Am Acad Dermatol 44:652–655

    PubMed  CAS  Google Scholar 

  180. Tolman KG, Sannella JJ, Freston JW (1974) Chemical structure of erythromycin and hepatotoxicity. Ann Intern Me 81:58–60

    CAS  Google Scholar 

  181. Swanson DJ, Sung RJ, Fine MJ, Orloff JJ, Chu SY, Yu VL (1992) Erythromycin ototoxicity: prospective assessment with serum concentrations and audiograms in a study of patients with pneumonia. Am J Med 92:61–68

    PubMed  CAS  Google Scholar 

  182. Schoenenberger RA, Haefeli WE, Weiss P, Ritz RF (1990) Association of intravenous erythromycin and potentially fatal ventricular tachycardia with Q-T prolongation (torsades de pointes). BMJ 300:1375–1376

    PubMed  CAS  Google Scholar 

  183. Williams JD, Sefton AM (1993) Comparison of macrolide antibiotics. J Antimicrob Chemother 31(Suppl C):11–26

    PubMed  CAS  Google Scholar 

  184. Anderson G, Esmonde TS, Coles S, Macklin J, Carnegie C (1991) A comparative safety and efficacy study of clarithromycin and erythromycin stearate in community-acquired pneumonia. J Antimicrob Chemother 27(Suppl A):117–124

    PubMed  Google Scholar 

  185. Guay DR, Patterson DR, Seipman N, Craft JC (1993) Overview of the tolerability profile of clarithromycin in preclinical and clinical trials. Drug Saf 8:350–364

    PubMed  CAS  Google Scholar 

  186. Gotfried MH (2003) Clarithromycin (Biaxin) extended-release tablet: a therapeutic review. Expert Rev Anti Infect Ther 1:9–20

    PubMed  CAS  Google Scholar 

  187. Eisenberg E, Barza M (1994) Azithromycin and clarithromycin. Curr Clin Top Infect Dis 14:52–79

    PubMed  CAS  Google Scholar 

  188. Liviu L, Yair L, Yehuda S (1996) Pancreatitis induced by clarithromycin. Ann Intern Med 125:701

    PubMed  CAS  Google Scholar 

  189. Pijpers E, van Rijswijk RE, Takx-Köhlen B, Schrey G (1996) A clarithromycin-induced myasthenic syndrome. Clin Infect Dis 22:175–176

    PubMed  CAS  Google Scholar 

  190. Yew WW, Chau CH, Lee J, Leung CW (1994) Cholestatic hepatitis in a patient who received clarithromycin therapy for a Mycobacterium chelonae lung infection. Clin Infect Dis 18: 1025–1026

    PubMed  CAS  Google Scholar 

  191. Shaheen N, Grimm IS (1996) Fulminant hepatic failure associated with clarithromycin. Am J Gastroenterol 91:394–395

    PubMed  CAS  Google Scholar 

  192. Wallace RJ Jr, Brown BA, Griffith DE (1993) Drug intolerance to high-dose clarithromycin among elderly patients. Diagn Microbiol Infect Dis 16:215–221

    PubMed  Google Scholar 

  193. Einarson A, Phillips E, Mawji F, D’Alimonte D, Schick B, Addis A, Mastroiacova P, Mazzone T, Matsui D, Koren G (1998) A prospective controlled multicentre study of clarithromycin in pregnancy. Am J Perinatol 15:523–525

    PubMed  CAS  Google Scholar 

  194. Hopkins S (1991) Clinical toleration and safety of azithromycin. Am J Med 91:40S–45S

    PubMed  CAS  Google Scholar 

  195. Hopkins S (1994) Clinical toleration and safety of azithromycin in adults and children. Rev Contemp Pharmacother 5:383–389

    Google Scholar 

  196. Garey KW, Amsden GW (1999) Intravenous azithromycin. Ann Pharmacother 33:218–228

    PubMed  CAS  Google Scholar 

  197. Lonks JR, Goldmann DA (2005) Telithromycin: a ketolide antibiotic for treatment of respiratory tract infections. Clin Infect Dis 40:1657–1664

    PubMed  CAS  Google Scholar 

  198. FDA (2003) Telithromycin briefing document for the FDA anti-infective drug product advisory meeting January 2003 [online]. Available from: http://www.fda.gov/ohrms/dockets/ac/03/ briefing/3919B1_01_Aventis-KETEK.pdf

  199. Clay KD, Hanson JS, Pope SD, Rissmiller RW, Purdum PP 3rd, Banks PM (2006) Brief communication: severe hepatotoxicity of telithromycin: three case reports and literature review. Ann Intern Med 144:415–420

    PubMed  Google Scholar 

  200. EMA (2006) EMEA statement on the safety of Ketek (telithromycin). European Medicine Agency, 27-1-2006. Available from: www.emea.europa.eu/pdfs/human/press/pr/2938606en.pdf

  201. FDA (2007) Telithromycin (marketed as Ketek) information. Available from: http://www.fda.gov/cder/drug/infopage/telith-romycin/default.htm

  202. Van Bambeke F, Harms JM, Van Laethem Y, Tulkens PM (2008) Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin Pharmacother 9:267–283

    PubMed  Google Scholar 

  203. von Rosensteil NA, Adam D (1995) Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf 13:105–122

    Google Scholar 

  204. Shi J, Montay G, Bhargava VO (2005) Clinical pharmacokinetics of telithromycin, the first ketolide antibacterial. Clin Pharmacokinet 44:915–934

    PubMed  CAS  Google Scholar 

  205. Amsden GW (1995) Macrolides versus azalides: a drug interaction update. Ann Pharmacother 29:906–917

    PubMed  CAS  Google Scholar 

  206. Reisz G, Pingleton SK, Melethil S, Ryan PB (1983) The effect of erythromycin on theophylline pharmacokinetics in chronic bronchitis. Am Rev Respir Dis 127:581–584

    PubMed  CAS  Google Scholar 

  207. Bachmann K, Schwartz JI, Forney R Jr, Frogameni A, Jauregui LE (1984) The effect of erythromycin on the disposition kinetics of warfarin. Pharmacology 28:171–176

    PubMed  CAS  Google Scholar 

  208. Kanamitsu S, Ito K, Green CE, Tyson CA, Shimada N, Sugiyama Y (2000) Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 17:419–426

    PubMed  CAS  Google Scholar 

  209. Bartkowski RR, Goldberg ME, Larijani GE, Boerner T (1989) Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 46:99–102

    PubMed  CAS  Google Scholar 

  210. Lu WJ, Huang K, Lai ML, Huang JD (2006) Erythromycin alters the pharmacokinetics of bromocriptine by inhibition of organic anion transporting polypeptide C-mediated uptake. Clin Pharmacol Ther 80:421–422

    PubMed  CAS  Google Scholar 

  211. Wong YY, Ludden TM, Bell RD (1983) Effect of erythromycin on carbamazepine kinetics. Clin Pharmacol Ther 33:460–464

    PubMed  CAS  Google Scholar 

  212. Martell R, Heinrichs D, Stiller CR, Jenner M, Keown PA, Dupre J (1986) The effects of erythromycin in patients treated with cyclosporine. Ann Intern Med 104:660–661

    PubMed  CAS  Google Scholar 

  213. Yasui N, Otani K, Kaneko S, Shimoyama R, Ohkubo T, Sugawara K (1997) Carbamazepine toxicity induced by clarithromycin coadministration in psychiatric patients. Int Clin Psychopharmacol 12:225–229

    PubMed  CAS  Google Scholar 

  214. Gillum JG, Israel DS, Scott RB, Climo MW, Polk RE (1996) Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 40:1715–1716

    PubMed  CAS  Google Scholar 

  215. Nawarskas JJ, McCarthy DM, Spinler SA (1997) Digoxin toxicity secondary to clarithromycin therapy. Ann Pharmacother 31:864–866

    PubMed  CAS  Google Scholar 

  216. Greenblatt DJ, von Moltke LL, Harmatz JS, Counihan M, Graf JA, Durol AL, Mertzanis P, Duan SX, Wright CE, Shader RI (1998) Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 64:278–285

    PubMed  CAS  Google Scholar 

  217. Horowitz RS, Dart RC, Gomez HF (1996) Clinical ergotism with lingual ischemia induced by clarithromycin-ergotamine interaction. Arch Intern Med 156:456–458

    PubMed  CAS  Google Scholar 

  218. Spicer ST, Liddle C, Chapman JR, Barclay P, Nankivell BJ, Thomas P, O’Connell PJ (1997) The mechanism of cyclosporine toxicity induced by clarithromycin. Br J Clin Pharmacol 43: 194–196

    PubMed  CAS  Google Scholar 

  219. Recker MW, Kier KL (1997) Potential interaction between clarithromycin and warfarin. Ann Pharmacother 31:996–998

    PubMed  CAS  Google Scholar 

  220. Jurima-Romet M, Crawford K, Cyr T, Inaba T (1994) Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 22: 849–857

    PubMed  CAS  Google Scholar 

  221. Paar D, Terjung B, Sauerbruch T (1997) Life-threatening interaction between clarithromycin and disopyramide. Lancet 349:326–327

    PubMed  CAS  Google Scholar 

  222. Yeates RA, Laufen H, Zimmermann T (1996) Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 34:400–405

    PubMed  CAS  Google Scholar 

  223. Polis MA, Piscitelli SC, Vogel S, Witebsky FG, Conville PS, Petty B, Kovacs JA, Davey RT Jr, Walker RE, Falloon J, Metcalf JA, Craft C, Lane HC, Masur H (1997) Clarithromycin lowers plasma zidovudine levels in persons with human immunodeficiency virus infection. Antimicrob Agents Chemother 41:1709–1714

    PubMed  CAS  Google Scholar 

  224. Gillum JG, Bruzzese VL, Israel DS, Kaplowitz LG, Polk RE (1996) Effect of clarithromycin on the pharmacokinetics of 2’,3’-dideoxyinosine in patients who are seropositive for human immunodeficiency virus. Clin Infect Dis 22:716–718

    PubMed  CAS  Google Scholar 

  225. Grunden JW, Fisher KA (1997) Lovastatin-induced rhabdomyolysis possibly associated with clarithromycin and azithromycin. Ann Pharmacother 31:859–863

    PubMed  CAS  Google Scholar 

  226. Shrader SP, Fermo JD, Dzikowski AL (2004) Azithromycin and warfarin interaction. Pharmacotherapy 24:945–949

    PubMed  Google Scholar 

  227. Page RL 2nd, Ruscin JM, Fish D, Lapointe M (2001) Possible interaction between intravenous azithromycin and oral cyclosporine. Pharmacotherapy 21:1436–1443

    PubMed  Google Scholar 

  228. Granowitz EV, Tabor KJ, Kirchhoffer JB (2000) Potentially fatal interaction between azithromycin and disopyramide. Pacing Clin Electrophysiol 23:1433–1435

    PubMed  CAS  Google Scholar 

  229. Pollak PT, Slayter KL (1997) Reduced serum theophylline concentrations after discontinuation of azithromycin: evidence for an unusual interaction. Pharmacotherapy 17:827–829

    PubMed  CAS  Google Scholar 

  230. Bellosta S, Paoletti R, Corsini A (2004) Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 109(23 Suppl 1):III50–57

    PubMed  Google Scholar 

  231. Tanaka E (1999) Clinically significant pharmacokinetic drug interactions with benzodiazepines. J Clin Pharm Ther 24:347–355

    PubMed  CAS  Google Scholar 

  232. Katz DA, Grimm DR, Cassar SC, Gentile MC, Ye X, Rieser MJ, Gordon EF, Polzin JE, Gustavson LE, Driscoll RM, O’dea RF, Williams LA, Bukofzer S (2004) CYP3A5 genotype has a dose-dependent effect on ABT-773 plasma levels. Clin Pharmacol Ther 75:516–528

    PubMed  CAS  Google Scholar 

  233. Bukofzer S, Gustavson L, Eiznhamer DA, Xu ZQ, Tuah TRJ, Leski ML, Flavin MT (2007) Assessment of the pharmacokinetic interaction between cethromycin and ketoconazole. 45th Annual meeting of the Infectious Diseases Society of America, San Diego, California, October 4–7. Abstract No. 444

    Google Scholar 

  234. Bukofzer S, O’Dea R, Gustavson L, Eiznhamer DA, Xu ZQ, Tuah TRJ, Leski ML, Flavin MT (2007) Assessment of the pharmacokinetic interaction between cethromycin and rifampin. 45th Annual meeting of the Infectious Diseases Society of America, San Diego, California, October 4–7. Abstract No. 443

    Google Scholar 

  235. Pletz MW, Preechachatchaval V, Bulitta J, Allewelt M, Burkhardt O, Lode H (2003) ABT-773: pharmacokinetics and interactions with ranitidine and sucralfate. Antimicrob Agents Chemother 47:1129–1131

    PubMed  CAS  Google Scholar 

  236. Asaka T, Manaka A, Sugiyama H (2003) Recent developments in macrolide antimicrobial research. Curr Top Med Chem 3:961–989

    PubMed  CAS  Google Scholar 

  237. Kohno S, Yamaguchi K, Tanigawara Y, Watanabe A, Aoki N, Niki Y, Fujita J (2007) The efficacy, the safety and the pharmacokinetics (PK) of S-013420, a bicyclolide in patients with community-acquired pneumonia (CAP). 47th Interscience conference on antimicrobial agents and chemotherapy, Chicago, Illinois, September 17–20. Abstract No. L-485

    Google Scholar 

  238. Tang D, Polemeropoulos A, Jiang L, Luo X, Chen Z, Wang Z, Or YS, Fritsche TR, Jones RN (2007) Discovery of EO-014887, a novel oxime 3,6-bicyclolide with high potency against MRSA and a favorable in vivo efficacy profile. 47th Interscience conference on antimicrobial agents and chemotherapy, Chicago, Illinois, September 17–20. Abstract No. F1-1676

    Google Scholar 

  239. Jones RN, Biedenbach DJ, Rhomberg PR, Fritsche TR, Sader HS (2008) Antimicrobial characterization of CEM-101 activity against 331 respiratory tract pathogens including multidrug-resistant pneumococcal serogroup 19A (MDR-19A) isolates. 48th Interscience conference on antimicrobial agents and chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract No. F1-3975

    Google Scholar 

  240. Heller S, Kellenberger L, Shapiro S (2007) Antipropioni-bacterial activity of BAL19403, a novel macrolide antibiotic. Antimicrob Agents Chemother 51:1956–1961

    PubMed  CAS  Google Scholar 

  241. McDaniel R, Welch M, Hutchinson CR (2005) Genetic approaches to polyketide antibiotics. 1. Chem Rev 105:543–558

    PubMed  CAS  Google Scholar 

  242. Zotchev SB, Stepanchikova AV, Sergeyko AP, Sobolev BN, Filimonov DA, Poroikov VV (2006) Rational design of macrolides by virtual screening of combinatorial libraries generated through in silico manipulation of polyketide synthases. J Med Chem 49:2077–2087

    PubMed  CAS  Google Scholar 

  243. Katz L, Ashley GW (2005) Translation and protein synthesis: macrolides. Chem Rev 105: 499–527

    PubMed  CAS  Google Scholar 

  244. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587

    PubMed  Google Scholar 

  245. Coenen S, Ferech M, Malhotra-Kumar S, Hendrickx E, Suetens C, Goossens H, ESAC Project Group (2006) European Surveillance of Antimicrobial Consumption (ESAC): outpatient macrolide, lincosamide and streptogramin (MLS) use in Europe. J Antimicrob Chemother 58:418–422

    PubMed  CAS  Google Scholar 

  246. Goossens H, Ferech M, Coenen S, Stephens P, European Surveillance of Antimicrobial Consumption Project Group (2007) Comparison of outpatient systemic antibacterial use in 2004 in the United States and 27 European countries. Clin Infect Dis 44:1091–1095

    PubMed  CAS  Google Scholar 

  247. FDA Guidance for Industry (2007) Antibacterial drug products: use of noninferiority studies to support approval (Draft. October 2007). Available from: http://www.fda.gov/cder/guidance/index.htm

  248. FDA Guidance for Industry (2007) Acute bacterial sinusitis: Developing drugs for treatment (Draft. October 2007). Available from: http://www.fda.gov/cder/guidance/index.htm

  249. FDA Guidance for Industry (2008) Acute bacterial exacerbation of chronic bronchitis in patients with chronic obstructive pulmonary disease: Developing antimicrobial drugs for treatment (Draft, August 2008). Available from: http://www.fda.gov/cder/guidance/index.htm

  250. FDA Guidance for Industry (2008) Acute bacterial otitis media: Developing drugs for treatment (Draft. January 2008). Available from: http://www.fda.gov/cder/guidance/index.htm

  251. Guidance for Industry (2009) Community-acquired bacterial pneumonia: development drugs for treatment (Draft. March 2009). Available from: http://www.fda.gov/cder/guidance/index.htm

  252. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    PubMed  Google Scholar 

  253. Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century – a clinical super-challenge. N Engl J Med 360:439–443

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Qi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, ZQ., Flavin, M.T., Eiznhamer, D.A. (2012). Macrolides and Ketolides. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_6

Download citation

Publish with us

Policies and ethics