Skip to main content

Glycopeptide Resistance

Abstract

Glycopeptides such as vancomycin and teicoplanin are active against clinically important Gram-positive pathogens. They act by binding, in a noncovalent fashion, to the C-terminal D-alanine-D-alanine dipeptide of the peptidoglycan precursors, preventing their incorporation into the growing wall and thus inhibiting cell-wall formation. Emergence of vancomycin resistance in enterococci was reported in 1986, approximately 30 years after the introduction of this antibiotic into clinical practice. Since then, vancomycin resistant enterococci have spread worldwide and are now one of the most common types of bacteria implicated in nosocomial infections in numerous countries. Glycopeptide resistance is due to acquisition of operons that encode enzymes responsible for synthesis of modified peptidoglycan precursors and for elimination of the precursors normally synthesized by the host. The origin of the resistance genes remains unclear. The mobility of certain van gene clusters by conjugation and transposition is expected to facilitate transfer of glycopeptide resistance from Enterococcus to more pathogenic bacteria such as staphylococci and streptococci. This mobility was confirmed in 2002 when the first clinical methicillin-resistant Staphylococcus aureus, highly resistant to glycopeptides by acquisition of a van operon from Enterococcus, was reported in the USA.

Keywords

  • Gene Cluster
  • Vancomycin Resistance
  • Serine Racemase
  • Peptidoglycan Synthesis
  • Glycopeptide Resistance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-1400-1_15
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-1400-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9

References

  1. Abadía Patiño L, Christiansen K, Bell J, Courvalin P et al (2004) VanE-type vancomycin-resistant Enterococcus faecalis clinical isolates from Australia. Antimicrob Agents Chemother 48:4882–4885

    PubMed  CrossRef  CAS  Google Scholar 

  2. Abadía Patiño L, Courvalin P, Périchon B (2002) vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol 184:6457–6464

    PubMed  CrossRef  CAS  Google Scholar 

  3. Aligholi M, Emaneini M, Jabalameli F et al (2008) Emergence of high-level vancomycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract 17:432–434

    PubMed  CrossRef  Google Scholar 

  4. Allen NE, Nicas TI (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532

    PubMed  CAS  CrossRef  Google Scholar 

  5. Ambur OH, Reynolds PE, Arias CA (2002) D-Ala:D-Ala ligase gene flanking the vanC cluster: evidence for presence of three ligase genes in vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother 46:95–100

    PubMed  CAS  CrossRef  Google Scholar 

  6. Arias CA, Courvalin P, Reynolds PE (2000) vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother 44:1660–1666

    PubMed  CAS  CrossRef  Google Scholar 

  7. Arias CA, Martin-Martinez M, Blundell TL et al (1999) Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol 31:1653–1664

    PubMed  CAS  CrossRef  Google Scholar 

  8. Arias CA, Weisner J, Blackburn JM, Reynolds PE (2000) Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology 146:1727–1734

    PubMed  CAS  Google Scholar 

  9. Arthur M, Depardieu F, Courvalin P (1999) Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145:1849–1858

    PubMed  CAS  CrossRef  Google Scholar 

  10. Arthur M, Depardieu F, Gerbaud G et al (1997) The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol 179:97–106

    PubMed  CAS  Google Scholar 

  11. Arthur M, Depardieu F, Molinas C et al (1995) The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 154:87–92

    PubMed  CAS  CrossRef  Google Scholar 

  12. Arthur M, Depardieu F, Reynolds P, Courvalin P (1999) Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob Agents Chemother 43:1875–1880

    PubMed  CAS  Google Scholar 

  13. Arthur M, Depardieu F, Reynolds P, Courvalin P (1996) Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol Microbiol 21:33–44

    PubMed  CAS  CrossRef  Google Scholar 

  14. Arthur M, Molinas C, Bugg TDH, Wright GD et al (1992) Evidence for in vivo incorporation of D-Lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob Agents Chemother 36:867–869

    PubMed  CAS  Google Scholar 

  15. Arthur M, Molinas C, Depardieu F, Courvalin P (1993) Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127

    PubMed  CAS  Google Scholar 

  16. Arthur M, Reynolds PE, Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407

    PubMed  CAS  CrossRef  Google Scholar 

  17. Aslangul E, Baptista M, Fantin B et al (1997) Selection of glycopeptide-resistant mutants of VanB-type Enterococcus faecalis BM4281 in vitro and in experimental endocarditis. J Infect Dis 175:598–605

    PubMed  CAS  CrossRef  Google Scholar 

  18. Ballard SA, Pertile KK, Lim M et al (2005) Molecular characterization of vanB elements in naturally occurring gut anaerobes. Antimicrob Agents Chemother 49:1688–1694

    PubMed  CAS  CrossRef  Google Scholar 

  19. Baptista M, Depardieu F, Courvalin P, Arthur M (1996) Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother 40:2291–2295

    PubMed  CAS  Google Scholar 

  20. Baptista M, Depardieu F, Reynolds P et al (1997) Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol 25:93–105

    PubMed  CAS  CrossRef  Google Scholar 

  21. Billot-Klein D, Blanot D, Gutmann L, van Heijenoort J (1994) Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-D-alanine and N-acetyl-D-alanyl-D-serine. Biochem J 304:1021–1022

    PubMed  CAS  Google Scholar 

  22. Billot-Klein D, Gutmann L, Sable S, Guittet E, Vanheijenoort J (1994) Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VanB-Type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol 176:2398–2405

    PubMed  CAS  Google Scholar 

  23. Boyd DA, Cabral T, Van Caeseele P et al (2002) Molecular characterization of the vanE gene cluster in vancomycin-resistant Enterococcus faecalis N00-410 isolated in Canada. Antimicrob Agents Chemother 46:1977–1979

    PubMed  CAS  CrossRef  Google Scholar 

  24. Boyd DA, Du T, Hizon R, Kaplen B et al (2006) VanG-type vancomycin-resistant Enterococcus faecalis strains isolated in Canada. Antimicrob Agents Chemother 50:2217–2221

    PubMed  CAS  CrossRef  Google Scholar 

  25. Boyd DA, Miller MA, Mulvey MR (2006) Enterococcus gallinarum N04-0414 harbors a VanD-type vancomycin resistance operon and does not contain a D-Alanine: D-Alanine 2 (ddl2) gene. Antimicrob Agents Chemother 50:1067–1070

    PubMed  CAS  CrossRef  Google Scholar 

  26. Boyd DA, Willey BM, Fawcett D et al (2008) Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother 52:2667–2672

    PubMed  CAS  CrossRef  Google Scholar 

  27. Bozdogan B, Esel D, Whitener C et al (2003) Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 52:864–868

    PubMed  CAS  CrossRef  Google Scholar 

  28. Bugg TDH, Wright GD, Dutka-Malen S et al (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415

    PubMed  CAS  CrossRef  Google Scholar 

  29. Candiani G, Abbondi M, Borgonovi M et al (1999) In-vitro and in-vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J Antimicrob Chemother 44:179–192

    PubMed  CAS  CrossRef  Google Scholar 

  30. Carias LL, Rudin SD, Donskey CJ, Rice LB (1998) Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 180:4426–4434

    PubMed  CAS  Google Scholar 

  31. Casadewall B, Courvalin P (1999) Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J Bacteriol 181:3644–3648

    PubMed  CAS  Google Scholar 

  32. Cui L, Iwamoto A, Lian JQ, Neoh HM et al (2006) Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:428–438

    PubMed  CAS  CrossRef  Google Scholar 

  33. Dahl KH, Lundblad EW, Rokenes TP et al (2000) Genetic linkage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiology 146:1469–1479

    PubMed  CAS  Google Scholar 

  34. Dahl KH, Simonsen GS, Olsvik O, Sundsfjord A (1999) Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother 43:1105–1110

    PubMed  CAS  Google Scholar 

  35. Depardieu F, Bonora MG, Reynolds PE, Courvalin P (2003) The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol 50:931–948

    PubMed  CAS  CrossRef  Google Scholar 

  36. Depardieu F, Courvalin P, Msadek T (2003) A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol Microbiol 50:1069–1083

    PubMed  CAS  CrossRef  Google Scholar 

  37. Depardieu F, Foucault ML, Bell J et al (2009) New combinations of mutations in VanD-type vancomycin resistant Enterococcus faecium, Enterococcus faecalis, and Enterococcus avium. Antimicrob Agents Chemother 53(5):1952–1963

    PubMed  CAS  CrossRef  Google Scholar 

  38. Depardieu F, Kolbert M, Pruul H et al (2004) VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 48:3892–3904

    PubMed  CAS  CrossRef  Google Scholar 

  39. Depardieu F, Reynolds PE, Courvalin P (2003) VanD-Type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother 47:7–18

    PubMed  CAS  CrossRef  Google Scholar 

  40. Dever LL, Smith SM, Handwerger S, Eng RHK (1995) Vancomycin-dependent Enterococcus faecium isolated from stool following oral vancomycin therapy. J Clin Microbiol 33:2770–2773

    PubMed  CAS  Google Scholar 

  41. Domingo MC, Huletsky A, Giroux R et al (2007) vanD and vanG-like gene clusters in a Ruminococcus species isolated from human bowel flora. Antimicrob Agents Chemother 51:4111–4117

    PubMed  CAS  CrossRef  Google Scholar 

  42. Dutta I, Reynolds PE (2002) Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob Agents Chemother 46:3125–3132

    PubMed  CAS  CrossRef  Google Scholar 

  43. Ender M, McCallum N, Adhikari R, Berger-Bachi B (2004) Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother 48:2295–2297

    PubMed  CAS  CrossRef  Google Scholar 

  44. Evers S, Courvalin P (1996) Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 178:1302–1309

    PubMed  CAS  Google Scholar 

  45. Fines M, Périchon B, Reynolds P et al (1999) VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 43:2161–2164

    PubMed  CAS  Google Scholar 

  46. Foucault ML, Courvalin P, Grillot-Courvalin C (2009) Fitness cost of VanA-type vancomycin resistance in methicillin resistant Staphylococcus aureus. Antimicrob Agents Chemother 53(6):2354–2359

    PubMed  CAS  CrossRef  Google Scholar 

  47. Fox PM, Lampert RJ, Stumpf KS et al (2006) Successful therapy of experimental endocarditis caused by vancomycin-resistant Staphylococcus aureus with a combination of vancomycin and beta-lactam antibiotics. Antimicrob Agents Chemother 50:2951–2956

    PubMed  CAS  CrossRef  Google Scholar 

  48. Fraimow H, Knob C, Herrero IA, Patel R (2005) Putative VanRS-like two-component regulatory system associated with the inducible glycopeptide resistance cluster of Paenibacillus popilliae. Antimicrob Agents Chemother 49:2625–2633

    PubMed  CAS  CrossRef  Google Scholar 

  49. Fraimow HS, Jungkind DL, Lander DW et al (1994) Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann Intern Med 121:22–26

    PubMed  CAS  Google Scholar 

  50. Garnier F, Taourit S, Glaser P et al (2000) Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:1481–1489

    PubMed  CAS  Google Scholar 

  51. Gholizadeh Y, Prevost M, Van Bambeke F et al (2001) Sequencing of the ddl gene and modeling of the mutated D-alanine:D-alanine ligase in glycopeptide-dependent strains of Enterococcus faecium. Protein Sci 10:836–844

    PubMed  CAS  CrossRef  Google Scholar 

  52. Gold HS (2001) Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin Infect Dis 33:210–219

    PubMed  CAS  CrossRef  Google Scholar 

  53. Gold HS, Unal S, Cercenado E, Thauvin-Eliopoulos C et al (1993) A gene conferring resistance to vancomycin but not teicoplanin in isolates of Enterococcus faecalis and Enterococcus faecium demonstrates homology with vanB, vanA, and vanC genes of enterococci. Antimicrob Agents Chemother 37:1604–1609

    PubMed  CAS  Google Scholar 

  54. Goldstein BP, Draghi DC, Sheehan DJ et al (2007) Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 51:1150–1154

    PubMed  CAS  CrossRef  Google Scholar 

  55. Green M, Shlaes JH, Barbadora K, Shlaes DM (1995) Bacteremia due to vancomycin-dependent Enterococcus faecium. Clin Infect Dis 20:712–714

    PubMed  CAS  CrossRef  Google Scholar 

  56. Guardabassi L, Christensen H, Hasman H, Dalsgaard A (2004) Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB. Antimicrob Agents Chemother 48:4915–4918

    PubMed  CAS  CrossRef  Google Scholar 

  57. Guardabassi L, Perichon B, van Heijenoort J et al (2005) Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother 49:4227–4233

    PubMed  CAS  CrossRef  Google Scholar 

  58. Handwerger S, Kolokathis A (1990) Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol Lett 58:167–170

    PubMed  CAS  Google Scholar 

  59. Handwerger S, Pucci MJ, Kolokathis A (1990) Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother 34: 358–360

    PubMed  CAS  Google Scholar 

  60. Handwerger S, Pucci MJ, Volk KJ et al (1994) Vancomycin-resistant Leuconostoc ­mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol 176:260–264

    PubMed  CAS  Google Scholar 

  61. Handwerger S, Skoble J (1995) Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 39:2446–2453

    PubMed  CAS  Google Scholar 

  62. Hasman H, Aarestrup FM, Dalsgaard A, Guardabassi L (2006) Heterologous expression of glycopeptide resistance vanHAX gene clusters from soil bacteria in Enterococcus faecalis. J Antimicrob Chemother 57:648–653

    PubMed  CAS  CrossRef  Google Scholar 

  63. Hayden MK, Trenholme GM, Schultz JE, Sahm DF (1993) In vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J Infect Dis 167:1224–1227

    PubMed  CAS  CrossRef  Google Scholar 

  64. Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    PubMed  CAS  CrossRef  Google Scholar 

  65. Holman TR, Wu Z, Wanner BL, Walsh CT (1994) Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33:4625–4631

    PubMed  CAS  CrossRef  Google Scholar 

  66. Hong HJ, Hutchings MI, Neu JM et al (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52:1107–1121

    PubMed  CAS  CrossRef  Google Scholar 

  67. Kacica M, McDonald LC (2004) Vancomycin-resistant Staphylococcus aureus - New York, 2004. Morb Mortal Wkly Rep 53:322–323

    Google Scholar 

  68. Kawalec M, Gniadkowski M, Kedzierska J et al (2001) Selection of a teicoplanin-resistant Enterococcus faecium mutant during an outbreak caused by vancomycin-resistant enterococci with the VanB phenotype. J Clin Microbiol 39:4274–4282

    PubMed  CAS  CrossRef  Google Scholar 

  69. King A, Phillips I, Kaniga K (2004) Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J Antimicrob Chemother 53:797–803

    PubMed  CAS  CrossRef  Google Scholar 

  70. Krause KM, Renelli M, Difuntorum S et al (2008) In vitro activity of telavancin against resistant gram-positive bacteria. Antimicrob Agents Chemother 52:2647–2652

    PubMed  CAS  CrossRef  Google Scholar 

  71. Launay A, Ballard SA, Johnson PD et al (2006) Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50:1054–1062

    PubMed  CAS  CrossRef  Google Scholar 

  72. Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    PubMed  CAS  CrossRef  Google Scholar 

  73. Leclercq R, Derlot E, Weber M et al (1989) Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 33:10–15

    PubMed  CAS  Google Scholar 

  74. Marshall CG, Broadhead G, Leskiw BK, Wright GD (1997) D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci USA 94:6480–6483

    PubMed  CAS  CrossRef  Google Scholar 

  75. Marshall CG, Lessard IAD, Park IS, Wright GD (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42:2215–2220

    PubMed  CAS  Google Scholar 

  76. Marshall CG, Wright GD (1998) DdlN from vancomycin-producing Amycolatopsis orientalis C392.2 is a VanA homologue with D-Alanyl-D-Lactate ligase activity. J Bacteriol 180: 5792–5795

    PubMed  CAS  Google Scholar 

  77. Marshall CG, Wright GD (1997) The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both D-Alanyl-D-Alanine and D-Alanyl-D-Lactate ligases. FEMS Microbiol Lett 157:295–299

    PubMed  CAS  CrossRef  Google Scholar 

  78. McKessar SJ, Berry AM, Bell JM et al (2000) Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother 44: 3224–3228

    PubMed  CAS  CrossRef  Google Scholar 

  79. Miller D, Urdaneta V, Weltman A, Park S (2002) Vancomycin-resistant Staphylococcus aureus. Morb Mortal Wkly Rep 51:902

    Google Scholar 

  80. Moubareck C, Meziane-Cherif D, Courvalin P, Périchon B (2009) VanA-type Staphylococcus aureus VRSA-7 is partially dependent on vancomycin for growth. Antimicrob Agents Chemother 53(9):3657–3663

    PubMed  CAS  CrossRef  Google Scholar 

  81. Nicas TI, Zeckel ML, Braun DK (1997) Beyond vancomycin: new therapies to meet the ­challenge of glycopeptide resistance. Trends Microbiol 5:240–249

    PubMed  CAS  CrossRef  Google Scholar 

  82. Noto MJ, Fox PM, Archer GL (2008) Spontaneous deletion of the methicillin resistance determinant, mecA, partially compensates for the fitness cost associated with high-level vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 52:1221–1229

    PubMed  CAS  CrossRef  Google Scholar 

  83. Ostrowsky BE, Clark NC, Thauvin-Eliopoulos C et al (1999) A cluster of VanD vancomycin-resistant Enterococcus faecium: molecular characterization and clinical epidemiology. J Infect Dis 180:1177–1185

    PubMed  CAS  CrossRef  Google Scholar 

  84. Palepou MF, Adebiyi AM, Tremlett CH et al (1998) Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci. J Antimicrob Chemother 42:605–612

    PubMed  CAS  CrossRef  Google Scholar 

  85. Panesso D, Abadia-Patino L, Vanegas N et al (2005) Transcriptional analysis of the vanC cluster from Enterococcus gallinarum strains with constitutive and inducible vancomycin resistance. Antimicrob Agents Chemother 49:1060–1066

    PubMed  CAS  CrossRef  Google Scholar 

  86. Patel R (2000) Enterococcal-type glycopeptide resistance genes in non-enterococcal organisms. FEMS Microbiol Lett 185:1–7

    PubMed  CAS  CrossRef  Google Scholar 

  87. Patel R, Piper K, Cockerill FR III, Steckelberg JM, Yousten AA (2000) The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother 44:705–709

    PubMed  CAS  CrossRef  Google Scholar 

  88. Patel R, Uhl JR, Kohner P, Hopkins MK et al (1998) DNA sequence variation within vanA, vanB, vanC-1, and vanC-2/3 genes of clinical Enterococcus isolates. Antimicrob Agents Chemother 42:202–205

    PubMed  CAS  Google Scholar 

  89. Périchon B, Casadewall B, Reynolds P, Courvalin P (2000) Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-Alanine:D-Alanine ligase. Antimicrob Agents Chemother 44:1346–1348

    PubMed  CrossRef  Google Scholar 

  90. Périchon B, Courvalin P (2004) Heterologous expression of the enterococcal vanA operon in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 48:4281–4285

    PubMed  CrossRef  CAS  Google Scholar 

  91. Périchon B, Courvalin P (2006) Synergism between beta-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob Agents Chemother 50:3622–3630

    PubMed  CrossRef  CAS  Google Scholar 

  92. Périchon B, Reynolds P, Courvalin P (1997) VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother 41:2016–2018

    PubMed  Google Scholar 

  93. Pootoolal J, Thomas MG, Marshall CG et al (2002) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci USA 99:8962–8967

    PubMed  CAS  Google Scholar 

  94. Quintiliani R Jr, Courvalin P (1996) Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:1–8

    PubMed  CAS  CrossRef  Google Scholar 

  95. JrR Q, Courvalin P (1994) Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol Lett 119:359–364

    CrossRef  Google Scholar 

  96. Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    PubMed  CAS  CrossRef  Google Scholar 

  97. Reynolds PE, Arias CA, Courvalin P (1999) Gene vanXYC encodes D,D-dipeptidase (VanX) and D, D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol 34:341–349

    PubMed  CAS  CrossRef  Google Scholar 

  98. Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-Alanyl-D-Serine. Antimicrob Agents Chemother 49:21–25

    PubMed  CAS  CrossRef  Google Scholar 

  99. Reynolds PE, Depardieu F, Dutka-Malen S et al (1994) Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol 13:1065–1070

    PubMed  CAS  CrossRef  Google Scholar 

  100. Reynolds PE, Snaith HA, Maguire AJ et al (1994) Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem J 301:5–8

    PubMed  CAS  Google Scholar 

  101. Rice LB, Carias LL, Donskey CL, Rudin SD (1998) Transferable, plasmid-mediated vanB-type glycopeptide resistance in Enterococcus faecium. Antimicrob Agents Chemother 42:963–964

    PubMed  CAS  Google Scholar 

  102. Rippere K, Patel R, Uhl JR et al (1998) DNA sequence resembling vanA and vanB in the vancomycin-resistant biopesticide Bacillus popilliae. J Infect Dis 178:584–588

    PubMed  CAS  Google Scholar 

  103. Rosato A, Pierre J, Billot-Klein D et al (1995) Inducible and constitutive expression of resistance to glycopeptides and vancomycin dependence in glycopeptide-resistant Enterococcus avium. Antimicrob Agents Chemother 39:830–833

    PubMed  CAS  Google Scholar 

  104. Saha B, Singh AK, Ghosh A, Bal M (2008) Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). J Med Microbiol 57:72–79

    PubMed  CAS  CrossRef  Google Scholar 

  105. Sahm DF, Free L, Handwerger S (1995) Inducible and constitutive expression of vanC-1-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob Agents Chemother 39:1480–1484

    PubMed  CAS  Google Scholar 

  106. Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    PubMed  CrossRef  CAS  Google Scholar 

  107. Severin A, Tabei K, Tenover F et al (2004) High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J Biol Chem 279:3398–3407

    PubMed  CAS  CrossRef  Google Scholar 

  108. Sievert DM, Boulton ML, Stolman G et al (2002) Staphylococcus aureus resistant to vancomycin. Morb Mortal Wkly Rep 51:565–567

    Google Scholar 

  109. Sievert DM, Rudrik JT, Patel JB et al (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis 46:668–674

    PubMed  CAS  CrossRef  Google Scholar 

  110. Sifaoui F, Gutmann L (1997) Vancomycin dependence in a VanA-producing Enterococcus avium strain with a nonsense mutation in the natural D-Ala-D-Ala ligase gene. Antimicrob Agents Chemother 41:1409

    PubMed  CAS  Google Scholar 

  111. Sung JM, Lindsay JA (2007) Staphylococcus aureus strains that are hypersusceptible to resistance gene transfer from enterococci. Antimicrob Agents Chemother 51:2189–2191

    PubMed  CAS  CrossRef  Google Scholar 

  112. Tanimoto K, Nomura T, Maruyama H et al (2006) First VanD-Type vancomycin-resistant Enterococcus raffinosus isolate. Antimicrob Agents Chemother 50:3966–3967

    PubMed  CAS  CrossRef  Google Scholar 

  113. Uttley AHC, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    PubMed  CAS  CrossRef  Google Scholar 

  114. Van Bambeke F (2004) Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol 4:471–478

    PubMed  CrossRef  CAS  Google Scholar 

  115. Van Bambeke F, Chauvel M, Reynolds PE et al (1999) Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother 43:41–47

    PubMed  CrossRef  Google Scholar 

  116. Van Caeseele P, Giercke S, Wylie J et al (2001) Identification of the first vancomycin-resistant Enterococcus faecalis harbouring vanE in Canada. Can Commun Dis Rep 27:101–104

    PubMed  Google Scholar 

  117. Waldron DE, Lindsay JA (2006) Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585

    PubMed  CAS  CrossRef  Google Scholar 

  118. Walsh TR, Howe RA (2002) The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annu Rev Microbiol 56:657–675

    PubMed  CAS  CrossRef  Google Scholar 

  119. Weigel LM, Clewell DB, Gill SR et al (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    PubMed  CAS  CrossRef  Google Scholar 

  120. Whitener CJ, Park SY, Browne FA et al (2004) Vancomycin-resistant Staphylococcus aureus in the absence of vancomycin exposure. Clin Infect Dis 38:1049–1055

    PubMed  CrossRef  Google Scholar 

  121. Willems RJ, Top J, van den Braak N, van Belkum A et al (1999) Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob Agents Chemother 43:483–491

    PubMed  CAS  CrossRef  Google Scholar 

  122. Wilson P, Koshy C, Minassian M (1998) An LY333328-dependent strain of Enterococcus faecalis isolated from a blood culture. J Antimicrob Chemother 42:406–407

    PubMed  CAS  CrossRef  Google Scholar 

  123. Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    PubMed  CrossRef  Google Scholar 

  124. Woodford N, Jones BL, Baccus Z et al (1995) Linkage of vancomycin and high-level gentamicin resistance genes on the same plasmid in a clinical isolate of Enterococcus faecalis. J Antimicrob Chemother 35:179–184

    PubMed  CAS  CrossRef  Google Scholar 

  125. Wu Z, Wright GD, Walsh CT (1995) Overexpression, purification, and characterization of VanX, a D-, D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 34:2455–2463

    PubMed  CAS  CrossRef  Google Scholar 

  126. Zhu W, Clark NC, McDougal LK et al (2008) Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother 52:452–457

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Courvalin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Périchon, B., Courvalin, P. (2012). Glycopeptide Resistance. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_15

Download citation