Skip to main content

Evolution of β-Lactamases: Past, Present, and Future

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

β-Lactamases represent some of the most widely studied examples of protein evolution, with mutations and new enzyme forms closely related to the introduction and use of novel β-lactam antibiotics. Early antibiotic literature described the presence of species-specific penicillinases and cephalosporinases. However, the recognition of plasmid-encoded β-lactamases expanded the list of enzymes to include hundreds of broad-spectrum enzymes that could be transferred among species. In spite of our best efforts to predict the evolutionary course for these enzymes, surprises have frequently occurred with the previously unnoticed occurrence of highly mutable plasmid-encoded β-lactamases from environmental sources, such as the now widely disseminated CTX-M extended-spectrum β-lactamases and the KPC family of serine carbapenemases. This unexplored natural reservoir as a source for new β-lactamases limits our ability to forecast the future evolutionary path(s) for these structurally diverse but functionally similar families of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbassi MS, Achour W, Touati A et al (2009) Enterococcus faecium isolated from bone marrow transplant patients in Tunisia: high prevalence of antimicrobial resistance and low pathogenic power. Patholog Biolog 57:268–271

    CAS  Google Scholar 

  2. Abraham EP, Chain E (1940) An enyzme from bacteria able to destroy penicillin. Nature 146:837

    CAS  Google Scholar 

  3. Akpaka PE, Swanston WH, Ihemere HN et al (2009) Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol 47:2670–2671

    PubMed  CAS  Google Scholar 

  4. Alonso R, Gerbaud G, Galimand M et al (2002) TEM-103/IRT-28 beta-lactamase, a new TEM variant produced by Escherichia coli BM4511. Antimicrob Agents Chemother 46:3627–3629

    PubMed  CAS  Google Scholar 

  5. Ambler RP (1980) The structure of ß-lactamases. Philos Trans R Soc Lond [Biol] 289: 321–331

    CAS  Google Scholar 

  6. Amsler KM, Davies TA, Shang W et al (2008) In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections. Antimicrob Agents Chemother 52:3418–3423

    PubMed  CAS  Google Scholar 

  7. Ashford WA, Golash RG, Hemming VG (1976) Penicillinase-producing Neisseria gonorrhoeae. Lancet 2(7987):657–658

    PubMed  CAS  Google Scholar 

  8. Aubron C, Poirel L, Ash RJ et al (2005) Carbapenemase-producing Enterobacteriaceae, US rivers. Emerg Infect Dis 11:260–264

    PubMed  CAS  Google Scholar 

  9. Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14

    PubMed  CAS  Google Scholar 

  10. Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933–951

    PubMed  CAS  Google Scholar 

  11. Bradford PA, Urban C, Mariano N et al (1997) Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41:563–569

    PubMed  CAS  Google Scholar 

  12. Bradford PA, Bratu S, Urban C et al (2004) Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 39:55–60

    PubMed  CAS  Google Scholar 

  13. Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Int Med 165:1430–1435

    CAS  Google Scholar 

  14. Bush K (1988) Recent developments in β-lactamase research and their implications for the future. Rev Infect Dis 10(681–690):739–743

    Google Scholar 

  15. Bush K (1989) Characterization of β-lactamases. Antimicrob Agents Chemother 33: 259–263

    PubMed  CAS  Google Scholar 

  16. Bush K (1989) Classification of β-lactamases: Groups 2c, 2d, 2e, 3, and 4. Antimicrob Agents Chemother 33:271–276

    PubMed  CAS  Google Scholar 

  17. Bush K (2008) Extended-spectrum beta-lactamases in North America, 1987–2006. Clin Microbiol Infect 14(Suppl 1):134–143

    PubMed  CAS  Google Scholar 

  18. Bush K (2009) The importance of β-lactamases to the development of new β-lactams. In: Mayers DL (ed) Antimicrobial drug resistance. Humana Press, New York, pp 135–144

    Google Scholar 

  19. Bush K, Jacoby GA (2010) An updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976. Published online 7 Dec 2009

    PubMed  CAS  Google Scholar 

  20. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for ß-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 1211–1233

    PubMed  CAS  Google Scholar 

  21. Bush K, Heep M, Macielag MJ et al (2007) Anti-MRSA beta-lactams in development, with a focus on ceftobiprole: the first anti-MRSA beta-lactam to demonstrate clinical efficacy. Exp Opin Invest Drugs 16:419–429

    CAS  Google Scholar 

  22. Cercenado E, Vicente MF, Diaz MD et al (1996) Characterization of clinical isolates of beta-lactamase-negative, highly ampicillin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 40:2420–2422

    PubMed  CAS  Google Scholar 

  23. Chambers HF (1999) Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis 179(Suppl 2):S353–359

    PubMed  CAS  Google Scholar 

  24. Chen Y, Garber E, Zhao Q et al (2005) In vitro activity of doripenem (S-4661) against multidrug-resistant gram-negative bacilli isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 49:2510–2511

    PubMed  CAS  Google Scholar 

  25. Chesnel L, Zapun A, Mouz N et al (2002) Increase of the deacylation rate of PBP2x from Streptococcus pneumoniae by single point mutations mimicking the class A beta-lactamases. Eur J Biochem 269:1678–1683

    PubMed  CAS  Google Scholar 

  26. Chiang T, Mariano N, Urban C et al (2007) Identification of carbapenem-resistant Klebsiella pneumoniae harboring KPC enzymes in New Jersey. Microb Drug Resis 13:235–239

    CAS  Google Scholar 

  27. Claus H, Martin HH, Jantos CA et al (2000) A search for beta-lactamase in chlamydiae, mycoplasmas, planctomycetes, and cyanelles: bacteria and bacterial descendants at different phylogenetic positions and stages of cell wall development. Microbiol Res 155:1–6

    PubMed  CAS  Google Scholar 

  28. Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature (London) 208:239–241

    CAS  Google Scholar 

  29. Deshpande LM, Rhomberg PR, Sader HS et al (2006) Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States Medical Centers: report from the MYSTIC Program (1999–2005). Diag Microbiol Infect Dis 56:367–372

    CAS  Google Scholar 

  30. Dhanji H, Carattoli A, Loughtey A et al (2009) Diverse plasmids encoding CTX-M-3/-15 ESBLs in Escherichia coli in long-term care facilities (LTCFs) in Belfast, UK. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 12–15 September 2009. Abstract C2-677

    Google Scholar 

  31. Elhani D, Bakir L, Aouni M et al (2009) Emergence of SHV- and CTX-M-beta-lactamase-producing Klebsiella pneumoniae strains in a Tunisian hospital (1999–2005). 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 12–15 September. Abstract C2-678

    Google Scholar 

  32. Endimiani A, Hujer AM, Perez F et al (2009) Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J Antimicrob Chemother 63:427–437

    PubMed  CAS  Google Scholar 

  33. Ensor VM, Shahid M, Evans JT et al (2006) Occurrence, prevalence and genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospitals. J Antimicrob Chemother 58:1260–1263

    PubMed  CAS  Google Scholar 

  34. Ensor VM, Jamal W, Rotimi VO et al (2009) Predominance of CTX-M-15 extended spectrum beta-lactamases in diverse Escherichia coli and Klebsiella pneumoniae from hospital and community patients in Kuwait. Int J Antimicrob Agents 33:487–489

    PubMed  CAS  Google Scholar 

  35. Farce P, Carricajo A, Vautrin A et al (2008) Diffusion of CTX-M-type extended-Spectrum β-lactamases in hospitals and the community in the Saint-Etienne region of France. 48th Interscience Conference on Antimicrobial Agents and Chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract C2-1687

    Google Scholar 

  36. Giakoupi P, Maltezou H, Polemis M et al (2009) KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles  =  European Communicable Disease Bulletin 14

    Google Scholar 

  37. Gibb AP, Tribuddharat C, Moore RA et al (2002) Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla(IMP) allele, bla(IMP-7). Antimicrob Agents Chemother 46:255–258

    PubMed  CAS  Google Scholar 

  38. Glupczynski Y, Berhin C, Sel E et al (2009) In vitro activity of doripenem and comparators against ESBL-producing Enterobacteriaceae: Results of a Belgian nationwide survey in 2008. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 12–15 September. Abstract C2-676

    Google Scholar 

  39. Grayson ML, Eliopoulos GM, Wennersten CB et al (1991) Increasing resistance to beta-lactam antibiotics among clinical isolates of Enterococcus faecium: a 22-year review at one institution. Antimicrob Agents Chemother 35:2180–2184

    PubMed  CAS  Google Scholar 

  40. Hall BG, Barlow M (2003) Structure-based phylogenies of the serine beta-lactamases. J Molec Evolution 57:255–260

    CAS  Google Scholar 

  41. Hall BG, Barlow M (2004) Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updates 7:111–123

    CAS  Google Scholar 

  42. Hawkey PM, Xiong J, Ye H et al (2001) Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People’s Republic of China. FEMS Microbiol Lett 194:53–57

    PubMed  CAS  Google Scholar 

  43. Hirakata Y, Izumikawa K, Yamaguchi T et al (1998) Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant gram-negative rods carrying the metallo-β-lactamase gene bla IMP. Antimicrob Agents Chemother 42:2006–2011

    PubMed  CAS  Google Scholar 

  44. Hocquet D, Berthelot P, Roussel-Delvallez M et al (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536

    PubMed  CAS  Google Scholar 

  45. Hujer KM, Hujer AM, Hulten EA et al (2006) Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 50:4114–4123

    PubMed  CAS  Google Scholar 

  46. Huovinen P, Huovinen S, Jacoby GA (1988) Sequence of PSE-2 beta-lactamase. Antimicrob Agents Chemother 32:134–136

    PubMed  CAS  Google Scholar 

  47. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22:161–182

    PubMed  CAS  Google Scholar 

  48. Jacoby GA, Bush K (2009) Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant β-lactamases. http://www.lahey.org/Studies/. Accessed 28 December 2009

  49. Jacoby GA, Mills DM, Chow N et al (2004) Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3203–3206

    PubMed  CAS  Google Scholar 

  50. Jaurin B, Grundstrom T (1981) amp C cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of ß-lactamases of the penicillinase type. Proc Natl Acad Sci USA 78:4897–4901

    PubMed  CAS  Google Scholar 

  51. Kabins SA, HM Sweeny, Cohen S (1966) Resistance to cephalosporin in vivo associated with increased cephalosporinase production. Ann Intern Med 65:1271–1277

    PubMed  CAS  Google Scholar 

  52. Kernodle DS, Stratton CW, McMurray LW et al (1989) Differentiation of ß-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J Infec Dis 159:103–108

    CAS  Google Scholar 

  53. Kirby WMM (1945) Bacteriostatic and lytic actions of penicillin on sensitive and resistant staphylococci. J Clin Invest 24:165–169

    PubMed  CAS  Google Scholar 

  54. Kirby WMN (1944) Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99:452–453

    PubMed  CAS  Google Scholar 

  55. Kitchel B, Rasheed JK, Patel JB et al (2009) Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370

    PubMed  CAS  Google Scholar 

  56. Kuck NA, Jacobus NV, Petersen PJ et al (1989) Comparative in vitro and in vivo activities of piperacillin combined with the ß-lactamase inhibitors tazobactam, clavulanic acid, and sulbactam. Antimicrob Agents Chemother 33:1964–1969

    PubMed  CAS  Google Scholar 

  57. Kwon DH, Dore MP, Kim JJ et al (2003) High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob Agents Chemother 47: 2169–2178

    PubMed  CAS  Google Scholar 

  58. Labia R, Morand A, Guionie M (1986) Beta-lactamase stability of imipenem. J Antimicrob Chemother 18(Suppl E):1–8

    PubMed  CAS  Google Scholar 

  59. Landman D, Bratu S, Kochar S et al (2007) Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 60:78–82

    PubMed  CAS  Google Scholar 

  60. Lavigne JP, Marchandin H, Delmas J et al (2007) CTX-M beta-lactamase-producing Escherichia coli in French hospitals: prevalence, molecular epidemiology, and risk factors. J Clin Microbiol 45:620–626

    PubMed  CAS  Google Scholar 

  61. Lewis JS 2nd, Herrera M, Wickes B et al (2007) First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother 51:4015–4021. [Erratum, Antimicrob Agents Chemother. 2008 52:810]

    PubMed  CAS  Google Scholar 

  62. Liu W, Chen L, Li H et al (2009) Novel CTX-M β-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother 63:895–900

    PubMed  CAS  Google Scholar 

  63. Livermore DM (1997) Acquired carbapenemases. J Antimicrob Chemother 39:673–676

    PubMed  CAS  Google Scholar 

  64. Livermore DM, Canton R, Gniadkowski M et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–674

    PubMed  CAS  Google Scholar 

  65. Lolans K, Queenan AM, Bush K et al (2005) First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 49:3538–3540

    PubMed  CAS  Google Scholar 

  66. Luzzaro F, Docquier JD, Colinon C et al (2004) Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid. Antimicrob Agents Chemother 48:648–650

    PubMed  CAS  Google Scholar 

  67. Mahapatra A, Samal B, Pattnaik D et al (2003) Antimicrobial susceptibility pattern of clinical isolates of non-fermentative bacteria. Indian J Pathol Microbiol 46:526–527

    PubMed  Google Scholar 

  68. McGettigan SE, Hu B, Andreacchio K et al (2009) Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol 47:2970–2974

    PubMed  CAS  Google Scholar 

  69. Medeiros AA (1984) ß-lactamases. Brit Med Bul 40:18–27

    CAS  Google Scholar 

  70. Mendes RE, Spanu T, Deshpande L et al (2009) Clonal dissemination of two clusters of Acinetobacter baumannii producing OXA-23 or OXA-58 in Rome, Italy. Clin Microbiol Infect 15:588–592

    PubMed  CAS  Google Scholar 

  71. Mercuri P, Ishii Y, Ma L et al (2002) Clonal diversity and metallo-beta-lactamase production in clinical isolates of Stenotrophomonas maltophilia. Microb Drug Resis 8:193–200

    CAS  Google Scholar 

  72. Miriagou V, Tzelepi E, Gianneli D et al (2003) Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-β-lactamase VIM-1. Antimicrob Agents Chemother 47:395–397

    PubMed  CAS  Google Scholar 

  73. Mittl PR, Luthy L, Hunziker P et al (2000) The cysteine-rich protein A from Helicobacter pylori is a beta-lactamase. J Biol Chem 275:17693–17699

    PubMed  CAS  Google Scholar 

  74. Moland ES, Black JA, Hossain A et al (2003) Discovery of CTX-M-like extended-spectrum beta-lactamases in Escherichia coli isolates from five US States. Antimicrob Agents Chemother 47:2382–2383

    PubMed  CAS  Google Scholar 

  75. Murray BE, Mederski-Samaroj B (1983) Transferable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Invest 72:1168–1171

    PubMed  CAS  Google Scholar 

  76. Nallapareddy SR, Wenxiang H, Weinstock GM et al (2005) Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J Bacteriol 187:5709–5718

    PubMed  CAS  Google Scholar 

  77. Navon-Venezia S, Chmelnitsky I, Leavitt A et al (2006) Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother 50:3098–3101

    PubMed  CAS  Google Scholar 

  78. Navon-Venezia S, Leavitt A, Schwaber MJ et al (2009) First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 53:818–820

    PubMed  CAS  Google Scholar 

  79. Neu HC, Labthavikul P (1982) Antibacterial activity and beta-lactamase stability of ceftazidime, an aminothiazolyl cephalosporin potentially active against Pseudomonas aeruginosa. Antimicrob Agents Chemother 21:11–18

    PubMed  CAS  Google Scholar 

  80. Normark S (1995) β-Lactamase induction in Gram-negative bacteria is intimately linked to peptidoglycan recycling. Microbial Drug Resist 1:111–114

    CAS  Google Scholar 

  81. Ono S, Muratani T, Matsumoto T (2005) Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother 49:2954–2958

    PubMed  CAS  Google Scholar 

  82. Oteo J, Cuevas O, Lopez-Rodriguez I et al (2009) Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother 64:524–528

    PubMed  CAS  Google Scholar 

  83. Pagani L, Colinon C, Migliavacca R et al (2005) Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo-beta-lactamase. J Clin Microbiol 43:3824–3828

    PubMed  CAS  Google Scholar 

  84. Palzkill T, Botstein D (1992) Identification of amino acid substitutions that alter the substrate specificity of TEM-1 β-lactamase. J Bacteriol 174:5237–5243

    PubMed  CAS  Google Scholar 

  85. Peirano G, Costello M Pitout JDD (2009) Molecular characteristics of extended-spectrum β-lactamase (ESBL) producing Escherichia coli from the Chicago area: high prevalence of ST131 producing CTX-M-15. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 12–15 September. Abstract C2-673

    Google Scholar 

  86. Peirano G, Seki LM, Val Passos VL et al (2009) Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother 63:265–268

    PubMed  CAS  Google Scholar 

  87. Pellegrini C, Mercuri PS, Celenza G et al (2009) Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. J Antimicrob Chemother 63:901–908

    PubMed  CAS  Google Scholar 

  88. Petrosillo N, Ioannidou E, Falagas ME (2008) Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect 14: 816–827

    PubMed  CAS  Google Scholar 

  89. Philippon A, Labia R, Jacoby G (1989) Extended-spectrum β-lactamases. Antimicrob Agents Chemother 33:1131–1136

    PubMed  CAS  Google Scholar 

  90. Pitout JD, Chow BL, Gregson DB et al (2007) Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. J Clin Microbiol 45:294–298

    PubMed  CAS  Google Scholar 

  91. Poirel L, Pham JN, Cabanne L et al (2004) Carbapenem-hydrolysing metallo-beta-lactamases from Klebsiella pneumoniae and Escherichia coli isolated in Australia. Pathology 36:366–367

    PubMed  CAS  Google Scholar 

  92. Pournaras S, Protonotariou E, Voulgari E et al (2009) Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother 64:348–352

    PubMed  CAS  Google Scholar 

  93. Prado T, Pereira WC, Silva DM et al (2008) Detection of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Lett Appl Microbiol 46:136–141

    PubMed  CAS  Google Scholar 

  94. Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458

    PubMed  CAS  Google Scholar 

  95. Quinteira S, Ferreira H, Peixe L et al (2005) First isolation of blaVIM-2 in an environmental isolate of Pseudomonas pseudoalcaligenes. Antimicrob Agents Chemother 49:2140–2141

    PubMed  CAS  Google Scholar 

  96. Radice M, Power P, Di Conza J et al (2002) Early dissemination of CTX-M-derived enzymes in South America. Antimicrob Agents Chemother 46:602–604

    PubMed  CAS  Google Scholar 

  97. Rahal JJ, Urban C, Segal-Maurer S et al (2002) Nosocomial antibiotic resistance in multiple gram-negative species: experience at one hospital with squeezing the resistance balloon at multiple sites. Clin Infect Dis 34:499–503

    PubMed  Google Scholar 

  98. Rasmussen BA, Bush K, Keeney D et al (1996) Characterization of IMI-1 ß-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother 40:2080–2086

    PubMed  CAS  Google Scholar 

  99. Recchia GD, Hall RM (1995) Plasmid evolution by acquisition of mobile gene cassettes: plasmid pIE723 contains the aadB gene cassette precisely inserted at a secondary site in the incQ plasmid RSF1010. Molec Microbiol 15:179–187

    CAS  Google Scholar 

  100. Redondo CS, Chalbaud AAlonso G (2009) Diversity and prevalence of CTX-M-B-lactamases among clinical isolates of Enterobacteriaceae in Caracas, Venezuela. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 12–15 September. Abstract C2-674

    Google Scholar 

  101. Riccio ML, Franceschini N, Boschi L et al (2000) Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother 44:1229–1235

    PubMed  CAS  Google Scholar 

  102. Richmond MH, Sykes RB (1973) The β-lactamases of gram-negative bacteria and their possible physiological role. In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic Press, New York, pp 31–88

    Google Scholar 

  103. Rimbara E, Noguchi N, Kawai T et al (2008) Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J Antimicrob Chemother 61:995–998

    PubMed  CAS  Google Scholar 

  104. Robledo IE, Aquino EE, Sante MI et al (2010) Detection of KPC in Acinetobacter sp. in Puerto Rico. Antimicrob Agents Chemother. 54:1354–1357

    Google Scholar 

  105. Roll DM, Yang Y, Wildey MJ et al (2010) Inhibition of metallo-β-lactamases by pyridine monothiocarboxylic acid analogs. J Antibiotics. Submitted 2009

    Google Scholar 

  106. Rooney PJ, O’Leary MC, Loughrey AC et al (2009) Nursing homes as a reservoir of extended-spectrum beta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 64:635–641

    PubMed  CAS  Google Scholar 

  107. Rossolini GM, Mantengoli E, Docquier JD et al (2007) Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains. New Microbiologica 30:332–339

    PubMed  Google Scholar 

  108. Sabath LD, Abraham EP (1966) Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98:11c–13c

    PubMed  CAS  Google Scholar 

  109. Samuelsen O, Naseer U, Tofteland S et al (2009) Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 63:654–658

    PubMed  CAS  Google Scholar 

  110. Sawai T, Misuhashi S, Yamagishi S (1968) Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in gram-negative rod bacteria resistant to a-aminobenzylpenicillin. Jpn J Microbiol 12:423–434

    PubMed  CAS  Google Scholar 

  111. Schluter A, Krause L, Szczepanowski R et al (2008) Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 136:65–76

    PubMed  Google Scholar 

  112. Sidjabat H, Doi Y, Adams-Haduch JM et al (2008) Predominance of CTX-M-producing Escherichia coli at a tertiary hospital in Pennsylvania. 48th Interscience Conference on Antimicrobial Agents and Chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract C2-1683

    Google Scholar 

  113. Smith Moland E, Hanson ND, Herrera VL et al (2003) Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother 51:711–714

    PubMed  CAS  Google Scholar 

  114. Stachyra T, Levasseur P, Pechereau MC et al (2009) In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 64:326–329

    PubMed  CAS  Google Scholar 

  115. Sykes RB, Richmond MH (1971) R factors, beta-lactamase, and carbenicillin-resistant Pseudomonas aeruginosa. Lancet 2:342–344

    PubMed  CAS  Google Scholar 

  116. Sykes RB, Bonner DP, Bush K et al (1982) Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother 21:85–92

    PubMed  CAS  Google Scholar 

  117. Tait-Kamradt AG, Cronan M, Dougherty TJ (2009) Comparative genome analysis of high-level penicillin resistance in Streptococcus pneumoniae. Microb Drug Resis 15:69–75

    CAS  Google Scholar 

  118. Thayer JD, Field FW, Perry MI et al (1961) Surveillance studies of Neisseria gonorrhoeae sensitivity to penicillin and nine other antibiotics. Bull World Health Org 24:327–331

    PubMed  CAS  Google Scholar 

  119. Tian G, Adams-Haduch JM, Sidjabat HE et al. (2009) Plasmid-mediated resistance determinants among ESBL-producing Enterobacteriaceae identified in Manila, Philippines. In: 49th Interscience Conference on Antimicrobial Agents and Chemotherapy San Francisco, CA, 12–15 September 2009. Abstract C2-681

    Google Scholar 

  120. Toth M, Smith C, Frase H et al (2010) An antibiotic-resistance enzyme from a deep-sea bacterium. J Am Chem Soc. 132:816–823

    Google Scholar 

  121. Urban C, Bradford PA, Tuckman M et al (2008) Carbapenem-resistant Escherichia coli harboring Klebsiella pneumoniae carbapenemase beta-lactamases associated with long-term care facilities. Clin Infect Dis 46:127–130

    PubMed  CAS  Google Scholar 

  122. Urban C, Mariano N, Bradford P et al (2008) Identification of CTX-M beta-lactamases in Escherichia coli (Ec) from both hospitalized patients and residents of long-term care facilities (LTCTs). 48th Interscience Conference on Antimicrobial Agents and Chemotherapy/46th Annual meeting of the Infectious Diseases Society of America, Washington, D.C., October 25–28. Abstract C2-1685

    Google Scholar 

  123. Urban C, Wehbeh W, Rahal JJ (2008) Antibacterial resistance associated with long-term care facilities. Rev Med Microbiol 19:47–55

    Google Scholar 

  124. Villegas MV, Lolans K, Correa A et al (2007) First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob Agents Chemother 51:1553–1555

    PubMed  CAS  Google Scholar 

  125. Walther-Rasmussen J, Hoiby N (2006) OXA-type carbapenemases. J Antimicrob Chemother 57:373–383

    PubMed  CAS  Google Scholar 

  126. Watanabe M, Iyobe S, Inoue M et al (1991) Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 35:147–151

    PubMed  CAS  Google Scholar 

  127. Wei Z, Du X, Yu Y et al (2007) Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 51:763–765

    PubMed  CAS  Google Scholar 

  128. Wells JS, Trejo WH, Principe PA et al (1982) SQ 26,180, a novel monobactam. I Taxonomy, fermentation and biological properties. J Antibiotics 35:184–188

    CAS  Google Scholar 

  129. Woodford N, Ward ME, Kaufmann ME et al (2004) Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. J Antimicrob Chemother 54:735–743

    PubMed  CAS  Google Scholar 

  130. Yan JJ, Ko WC, Wu JJ (2001) Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-beta-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:2368–2371

    PubMed  CAS  Google Scholar 

  131. Yang Y, Wu P, Livermore DM (1990) Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems for two Serratia marcescens isolates. Antimicrob Agents Chemother 34:755–758

    PubMed  CAS  Google Scholar 

  132. Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    PubMed  CAS  Google Scholar 

  133. Yu WL, Chuang YC, Walther-Rasmussen J et al (2006) Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 39:264–277

    PubMed  CAS  Google Scholar 

  134. Yu Y, Ji S, Chen Y et al (2007) Resistance of strains producing extended-spectrum beta-­lactamases and genotype distribution in China. J Infect 54:53–57

    PubMed  Google Scholar 

  135. Yum JH, Yong D, Lee K et al (2002) A new integron carrying VIM-2 metallo-beta-lactamase gene cassette in a Serratia marcescens isolate. Diag Microbiol Infect Dis 42:217–219

    CAS  Google Scholar 

  136. Zavascki AP, Machado ABMP, de Oliveira KRP et al (2009) KPC-2-producing Enterobacter cloacae in two cities from Southern Brazil. Int J Antimicrob Agents 34:286–288

    PubMed  CAS  Google Scholar 

  137. Zhuo C, Zhong N (2009) Predominance of CTX-M-15 producing Escherichia coli and Klebsiella pneumoniae in Southern China. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 12–15 September. Abstract C2-684

    Google Scholar 

  138. Zscheck KK, Murray BE (1991) Nucleotide sequence of the beta-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal β-lactamase genes. Antimicrob Agents Chemother 35:1736–1740

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Bush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bush, K. (2012). Evolution of β-Lactamases: Past, Present, and Future. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_12

Download citation

Publish with us

Policies and ethics