Skip to main content

Efflux-Mediated Antimicrobial Resistance

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

Efflux, or the energy-dependent export or exclusion of antimicrobials from bacterial cells was first reported in the early 1980s and is now recognized as an increasingly important determinant of resistance in bacterial pathogens [275, 276]. Bacterial efflux systems capable of accommodating antimicrobials generally fall into five classes: (1) the major facilitator (MF) superfamily, (2) the ATP-binding cassette (ABC) family, (3) the resistance-nodulation-division (RND) family, (4) the small multidrug resistance (SMR) family [a member of the much larger drug/metabolite transporter (DMT) superfamily] and (5) the multidrug and toxic compound extrusion (MATE) family [289].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouzeed YM, Baucheron S, Cloeckaert A (2008) ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52:2428–2434

    PubMed  CAS  Google Scholar 

  2. Akama H, Kanemaki M, Yoshimura M et al (2004) Crystal structure of the drug-discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 17:52816–52819

    Google Scholar 

  3. Akama H, Matsuura T, Kashiwagi S et al (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279: 25939–25942

    PubMed  CAS  Google Scholar 

  4. Akiba M, Lin J, Barton YW et al (2006) Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57:52–60

    PubMed  CAS  Google Scholar 

  5. Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antbiotics and other toxic chemicals. Trends Microbiol 7:410–413

    PubMed  CAS  Google Scholar 

  6. Alonso A, Martinez JL (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:3079–3086

    PubMed  CAS  Google Scholar 

  7. Alonso A, Campanario E, Martinez JL (1999) Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145: 2857–2862

    PubMed  CAS  Google Scholar 

  8. Andersen C, Koronakis E, Hughes C et al (2002) An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 44:1131–1139

    PubMed  CAS  Google Scholar 

  9. Andre E, Bastide L, Villain-Guillot P et al (2004) A multiwell assay to isolate compounds inhibiting the assembly of the prokaryotic RNA polymerase. Assay Drug Dev Technol 2: 629–635

    PubMed  CAS  Google Scholar 

  10. Antunes P, Machado J, Peixe L (2007) Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3′ conserved sequence region among Salmonella isolates. Antimicrob Agents Chemother 51:1545–1548

    PubMed  CAS  Google Scholar 

  11. Bailey AM, Paulsen IT, Piddock LJ (2008) RamA confers multidrug-resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611

    PubMed  CAS  Google Scholar 

  12. Ball AR, Casadei G, Samosorn S et al (2006) Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chem Biol 1:594–600

    PubMed  CAS  Google Scholar 

  13. Baucheron S, Imberechts H, Chaslus-Dancla E et al (2002) The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist 8:281–289

    PubMed  CAS  Google Scholar 

  14. Baucheron S, Tyler S, Boyd D et al (2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother 48:3729–3735

    PubMed  CAS  Google Scholar 

  15. Begic S, Worobec EA (2008) The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. Microbiology 154:454–461

    PubMed  CAS  Google Scholar 

  16. Begic S, Worobec EA (2008) Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. Can J Microbiol 54:411–416

    PubMed  CAS  Google Scholar 

  17. Begum A, Rahman MM, Ogawa W et al (2005) Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957

    PubMed  CAS  Google Scholar 

  18. Bina JE, Provenzano D, Wang C et al (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181

    PubMed  CAS  Google Scholar 

  19. Bina XR, Lavine CL, Miller MA et al (2008) The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett 279:226–233

    PubMed  CAS  Google Scholar 

  20. Bina XR, Provenzano D, Nguyen N et al (2008) Vibrio cholerae RND-family efflux systems are required for antimicrobial resistance, optimal virulence factor production and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605

    PubMed  CAS  Google Scholar 

  21. Blanco M, Gutierrez-Martin CB, Rodriguez-Ferri EF et al (2006) Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother 50:702–708

    PubMed  CAS  Google Scholar 

  22. Bogdanovich T, Bozdogan B, Appelbaum PC (2006) Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 50: 893–898

    PubMed  CAS  Google Scholar 

  23. Bohnert JA, Kern WV (2005) Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 49:849–852

    PubMed  CAS  Google Scholar 

  24. Bohnert JA, Schuster S, Fahnrich E et al (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59:1216–1222

    PubMed  CAS  Google Scholar 

  25. Boutoille D, Corvec S, Caroff N et al (2004) Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β-lactam resistance. FEMS Microbiol Lett 230:143–146

    PubMed  CAS  Google Scholar 

  26. Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–78

    PubMed  CAS  Google Scholar 

  27. Braoudaki M, Hilton AC (2004) Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett 235:305–309

    PubMed  CAS  Google Scholar 

  28. Bratu S, Landman D, Martin DA et al (2008) Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob Agents Chemother 52:2999–3005

    PubMed  CAS  Google Scholar 

  29. Brown DG, Swanson JK, Allen C (2007) Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 73:2777–2786

    PubMed  CAS  Google Scholar 

  30. Buckley AM, Webber MA, Cooles S et al (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856

    PubMed  CAS  Google Scholar 

  31. Bunikis I, Denker K, Ostberg Y et al (2008) An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4:e1000009

    PubMed  Google Scholar 

  32. Burger MT, Hiebert C, Seid M et al (2006) Synthesis and antibacterial activity of novel C12 ethyl ketolides. Bioorg Med Chem 14:5592–5604

    PubMed  CAS  Google Scholar 

  33. Butaye P, Cloeckaert A, Schwarz S (2003) Mobile genes coding for efflux-mediated antimicrobial resistance in gram-positive and gram-negative bacteria. Int J Antimicrob Agents 22:205–210

    PubMed  CAS  Google Scholar 

  34. Cagliero C, Mouline C, Payot S et al (2005) Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 56:948–950

    PubMed  CAS  Google Scholar 

  35. Cagliero C, Mouline C, Cloeckaert A et al (2006) Synergy between the efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and C. coli. Antimicrob Agents Chemother 50:3893–3896

    PubMed  CAS  Google Scholar 

  36. Cagliero C, Maurel MC, Cloeckaert A et al (2007) Regulation of the expression of the CmeABC efflux pump in Campylobacter jejuni: identification of a point mutation abolishing the binding of the CmeR repressor in an in vitro-selected multidrug-resistant mutant. FEMS Microbiol Lett 267:89–94

    PubMed  CAS  Google Scholar 

  37. Cagnacci S, Gualco L, Debbia E et al (2008) European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 46:2605–2612

    PubMed  CAS  Google Scholar 

  38. Cai Y, Kong F, Gilbert GL (2007) Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J Clin Microbiol 45:2754–2755

    PubMed  CAS  Google Scholar 

  39. Cao L, Srikumar R, Poole K (2004) MexAB-OprM hyperexpression in NalC type multidrug resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol 53:1423–1436

    PubMed  CAS  Google Scholar 

  40. Capilla S, Ruiz J, Goni P et al (2004) Characterization of the molecular mechanisms of quinolone resistance in Yersinia enterocolitica O: 3 clinical isolates. J Antimicrob Chemother 53:1068–1071

    PubMed  CAS  Google Scholar 

  41. Cattoir V, Poirel L, Nordmann P (2008) Plasmid-Mediated Quinolone Resistance QepA2 from Escherichia coli in France. Antimicrob Agents Chemother 52:3801–3804

    PubMed  CAS  Google Scholar 

  42. Cavaco LM, Frimodt-Moller N, Hasman H et al (2008) Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. Microb Drug Resist 14:163–169

    PubMed  CAS  Google Scholar 

  43. Cavallo JD, Plesiat P, Couetdic G et al (2002) Mechanisms of β-lactam resistance in Pseudomonas aeruginosa: prevalence of OprM-overproducing strains in a French multicentre study (1997). J Antimicrob Chemother 50:1039–1043

    PubMed  CAS  Google Scholar 

  44. Ceccarelli D, Salvia AM, Sami J et al (2006) New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola. Antimicrob Agents Chemother 50:2493–2499

    PubMed  CAS  Google Scholar 

  45. Chan YY, Tan TM, Ong YM et al (2004) BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 48:1128–1135

    PubMed  CAS  Google Scholar 

  46. Chan YY, Ong YM, Chua KL (2007) Synergistic interaction between phenothiazines and antimicrobial agents against Burkholderia pseudomallei. Antimicrob Agents Chemother 51:623–630

    PubMed  CAS  Google Scholar 

  47. Chang LL, Chen HF, Chang CY et al (2004) Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518–521

    PubMed  CAS  Google Scholar 

  48. Chang TM, Lu PL, Li HH et al (2007) Characterization of fluoroquinolone resistance mechanisms and their correlation with the degree of resistance to clinically used fluoroquinolones among Escherichia coli isolates. J Chemother 19:488–494

    PubMed  CAS  Google Scholar 

  49. Chau SL, Chu YW, Houang ET (2004) Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 48: 4054–4055

    PubMed  CAS  Google Scholar 

  50. Chen J, Kuroda T, Huda MN et al (2003) An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 52:176–179

    PubMed  CAS  Google Scholar 

  51. Chen S, Cui S, McDermott PF et al (2007) Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 51:535–542

    PubMed  CAS  Google Scholar 

  52. Chenia HY, Pillay B, Pillay D (2006) Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother 58:1274–1278

    PubMed  CAS  Google Scholar 

  53. Chevalier J, Atifi S, Eyraud A et al (2001) New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J Med Chem 44:4023–4026

    PubMed  CAS  Google Scholar 

  54. Chevalier J, Bredin J, Mahamoud A et al (2004) Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 48:1043–1046

    PubMed  CAS  Google Scholar 

  55. Chevalier J, Mulfinger C, Garnotel E et al (2008) Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS One 3:e3203

    PubMed  Google Scholar 

  56. Chollet R, Chevalier J, Bryskier A et al (2004) The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48:3621–3624

    PubMed  CAS  Google Scholar 

  57. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    PubMed  CAS  Google Scholar 

  58. Choudhuri BS, Bhakta S, Barik R et al (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285

    PubMed  CAS  Google Scholar 

  59. Chu C, Su LH, Chu CH et al (2005) Resistance to fluoroquinolones linked to gyrA and par C mutations and overexpression of AcrAB efflux pump in Salmonella enterica serotype Choleraesuis. Microb Drug Resist 11:248–253

    PubMed  CAS  Google Scholar 

  60. Chu YW, Chau SL, Houang ET (2006) Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 55:477–478

    PubMed  CAS  Google Scholar 

  61. Chuanchuen R, Beinlich K, Hoang TT et al (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432

    PubMed  CAS  Google Scholar 

  62. Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP (2003) High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31:124–127

    PubMed  Google Scholar 

  63. Chuanchuen R, Wannaprasat W, Ajariyakhajorn K et al (2008) Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol 52:392–398

    PubMed  CAS  Google Scholar 

  64. Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282

    PubMed  CAS  Google Scholar 

  65. Cochetti I, Vecchi M, Mingoia M et al (2005) Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother 49:4999–5006

    PubMed  CAS  Google Scholar 

  66. Colangeli R, Helb D, Sridharan S et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55:1829–1840

    PubMed  CAS  Google Scholar 

  67. Cole EC, Addison RM, Rubino JR et al (2003) Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and ­nonusers. J Appl Microbiol 95:664–676

    PubMed  CAS  Google Scholar 

  68. Cousin JS Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J Antimicrob Chemother 51:131–133

    PubMed  CAS  Google Scholar 

  69. Cousin S Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987. Antimicrob Agents Chemother 47:3877–3880

    PubMed  CAS  Google Scholar 

  70. Crosby JA, Kachlany SC (2007) TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 388:83–92

    PubMed  CAS  Google Scholar 

  71. Crossman LC, Gould VC, Dow JM et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74

    PubMed  Google Scholar 

  72. D’Costa VM, McGrann KM, Hughes DW et al (2006) Sampling the antibiotic resistome. Science 311:374–377

    PubMed  Google Scholar 

  73. Daikos GL, Koutsolioutsou A, Tsiodras S et al (2008) Evolution of macrolide resistance in Streptococcus pneumoniae clinical isolates in the prevaccine era. Diagn Microbiol Infect Dis 60:393–398

    PubMed  CAS  Google Scholar 

  74. Dalhoff A, Janjic N, Echols R (2006) Redefining penems. Biochem Pharmacol 71:1085–1095

    PubMed  CAS  Google Scholar 

  75. Damier-Piolle L, Magnet S, Bremont S et al (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562

    PubMed  CAS  Google Scholar 

  76. Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:3127–3134

    PubMed  CAS  Google Scholar 

  77. De Rossi E, Blokpoel MC, Cantoni R et al (1998) Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob Agents Chemother 42:1931–1937

    PubMed  Google Scholar 

  78. De Rossi E, Ainsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52

    PubMed  Google Scholar 

  79. Dean CR, Visalli MA, Projan SJ et al (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978

    PubMed  CAS  Google Scholar 

  80. Dean CR, Narayan S, Daigle DM et al (2005) Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 49:3129–3135

    PubMed  CAS  Google Scholar 

  81. Deplano A, Denis O, Poirel L et al (2005) Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 43:1198–1204

    PubMed  CAS  Google Scholar 

  82. Doern GV (2006) Macrolide and ketolide resistance with Streptococcus pneumoniae. Med Clin North Am 90:1109–1124

    PubMed  CAS  Google Scholar 

  83. Doi Y, Yokoyama K, Yamane K et al (2004) Plasmid-mediated 16 S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother 48:491–496

    PubMed  CAS  Google Scholar 

  84. Drissi M, Ahmed ZB, Dehecq B et al (2008) Antibiotic susceptibility and mechanisms of β-lactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. Med Mal Infect 38:187–191

    PubMed  CAS  Google Scholar 

  85. Dupont P, Hocquet D, Jeannot K et al (2005) Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother 55:518–522

    PubMed  CAS  Google Scholar 

  86. Eguchi K, Ueda Y, Kanazawa K et al (2007) The mode of action of 2-(thiazol-2-ylthio)-1β-methylcarbapenems against Pseudomonas aeruginosa: the impact of outer membrane permeability and the contribution of MexAB-OprM efflux system. J Antibiot (Tokyo) 60:129–135

    CAS  Google Scholar 

  87. El Amin N, Giske CG, Jalal S et al (2005) Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 113:187–196

    PubMed  CAS  Google Scholar 

  88. Elkins CA, Nikaido H (2003) Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol 185:5349–5356

    PubMed  CAS  Google Scholar 

  89. Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini Rev Med Chem 6: 375–386

    PubMed  CAS  Google Scholar 

  90. Enriquez R, Abad R, Salcedo C et al (2008) Fluoroquinolone resistance in Neisseria meningitidis in Spain. J Antimicrob Chemother 61:286–290

    PubMed  CAS  Google Scholar 

  91. Escribano I, Rodriguez JC, Llorca B et al (2007) Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 53:397–401 (Basel)

    PubMed  CAS  Google Scholar 

  92. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    PubMed  CAS  Google Scholar 

  93. Felmingham D, Canton R, Jenkins SG (2007) Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 55:111–118

    PubMed  Google Scholar 

  94. Fraud S, Campigotto AJ, Chen Z, Poole K (2008) The MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane damaging agents dependent upon the AlgU stress-response sigma factor. Antimicrob Agents Chemother 52:4478–4482

    PubMed  CAS  Google Scholar 

  95. Fricke WF, Wright MS, Lindell AH et al (2008) Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate E. coli SMS-3-5. J Bacteriol 190:6779–6794

    PubMed  CAS  Google Scholar 

  96. Fukuda H, Hosaka M, Iyobe S et al (1995) nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:790–792

    PubMed  CAS  Google Scholar 

  97. Gad GF, El Domany RA, Zaki S et al (2007) Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother 60:1010–1017

    PubMed  CAS  Google Scholar 

  98. Garcia-Cobos S, Campos J, Lazaro E et al (2007) Ampicillin-resistant non-β-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 51:2564–2573

    PubMed  CAS  Google Scholar 

  99. Garvey MI, Piddock LJ (2008) The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 52:1677–1685

    PubMed  CAS  Google Scholar 

  100. Ge B, McDermott PF, White DG et al (2005) Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 49:3347–3354

    PubMed  CAS  Google Scholar 

  101. German N, Wei P, Kaatz GW et al (2008) Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur J Med Chem 43: 2453–2463

    PubMed  CAS  Google Scholar 

  102. Ghisalberti D, Mahamoud A, Chevalier J et al (2006) Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates. Int J Antimicrob Agents 27:565–569

    PubMed  CAS  Google Scholar 

  103. Gibreel A, Wetsch NM, Taylor DE (2007) Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 51:3212–3216

    PubMed  CAS  Google Scholar 

  104. Gil H, Platz GJ, Forestal CA et al (2006) Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci USA 103: 12897–12902

    PubMed  CAS  Google Scholar 

  105. Giske CG, Buaro L, Sundsfjord A et al (2008) Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microb Drug Resist 14:23–30

    PubMed  CAS  Google Scholar 

  106. Giuliodori AM, Gualerzi CO, Soto S et al (2007) Review on bacterial stress topics. Ann N Y Acad Sci 1113:95–104

    PubMed  CAS  Google Scholar 

  107. Goldman JD, White DG, Levy SB (1996) Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob Agents Chemother 40:1266–1269

    PubMed  CAS  Google Scholar 

  108. Groh JL, Luo Q, Ballard JD et al (2007) Genes that enhance the ecological fitness of Shewanella oneidensis MR-1 in sediments reveal the value of antibiotic resistance. Appl Environ Microbiol 73:492–498

    PubMed  CAS  Google Scholar 

  109. Guglierame P, Pasca MR, De Rossi E et al (2006) Efflux pump genes of the resistance-­nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 6:66

    PubMed  Google Scholar 

  110. Gumbo T, Louie A, Liu W et al (2007) Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis 195:194–201

    PubMed  CAS  Google Scholar 

  111. Gutierrez O, Juan C, Cercenado E et al (2007) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 51:4329–4335

    PubMed  CAS  Google Scholar 

  112. Halling SM, Jensen AE (2006) Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23 S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol 6:84

    PubMed  Google Scholar 

  113. Hamzehpour MM, Pechere J-C, Plesiat P et al (1995) OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:2392–2396

    PubMed  CAS  Google Scholar 

  114. Hanninen ML, Hannula M (2007) Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 60:1251–1257

    PubMed  Google Scholar 

  115. Hannula M, Hanninen ML (2008) Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 57:851–855

    PubMed  CAS  Google Scholar 

  116. Hansen LH, Johannesen E, Burmolle M et al (2004) Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337

    PubMed  CAS  Google Scholar 

  117. Hansen LH, Jensen LB, Sorensen HI et al (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147

    PubMed  CAS  Google Scholar 

  118. Hasdemir UO, Chevalier J, Nordmann P et al (2004) Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 42:2701–2706

    PubMed  CAS  Google Scholar 

  119. Henrichfreise B, Wiegand I, Pfister W et al (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070

    PubMed  CAS  Google Scholar 

  120. Hernould M, Gagne S, Fournier M et al (2008) Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrob Agents Chemother 52:1559–1563

    PubMed  CAS  Google Scholar 

  121. Higgins PG, Fluit AC, Milatovic D et al (2003) Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 21:409–413

    PubMed  CAS  Google Scholar 

  122. Higgins PG, Fluit AC, Schmitz FJ (2003) Fluoroquinolones: structure and target sites. Curr Drug Targets 4:181–190

    PubMed  CAS  Google Scholar 

  123. Higgins MK, Bokma E, Koronakis E et al (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci USA 101:9994–9999

    PubMed  CAS  Google Scholar 

  124. Higgins PG, Wisplinghoff H, Stefanik D et al (2004) Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter ­baumannii. J Antimicrob Chemother 54:821–823

    PubMed  CAS  Google Scholar 

  125. Hirata T, Saito A, Nishino K et al (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184

    PubMed  CAS  Google Scholar 

  126. Hocquet D, Vogne C, El Garch F et al (2003) MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 47:1371–1375

    PubMed  CAS  Google Scholar 

  127. Hocquet D, Nordmann P, El Garch F et al (2006) Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:1347–1351

    PubMed  CAS  Google Scholar 

  128. Hu WS, Yao SM, Fung CP et al (2007) An OXA-66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in Acinetobacter baumannii. Antimicrob Agents Chemother 51:3844–3852

    PubMed  CAS  Google Scholar 

  129. Huang L, Sun L, Xu G et al (2008) Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of Acinetobacter baumannii in a Chinese hospital. Diagn Microbiol Infect Dis 62(3):326–332

    PubMed  CAS  Google Scholar 

  130. Huda N, Lee EW, Chen J et al (2003) Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob Agents Chemother 47:2413–2417

    PubMed  CAS  Google Scholar 

  131. Ince D, Zhang X, Silver LC et al (2002) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of garenoxacin (BMS-284756, T-3811ME), a new desfluoroquinolone. Antimicrob Agents Chemother 46:3370–3380

    PubMed  CAS  Google Scholar 

  132. Islam S, Jalal S, Wretlind B (2004) Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 10:877–883

    PubMed  CAS  Google Scholar 

  133. Jacobs MR, Bajaksouzian S, Windau A et al (2004) In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob Agents Chemother 48:3338–3342

    PubMed  CAS  Google Scholar 

  134. Jakics EB, Iyobe S, Hirai K et al (1992) Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:2562–2565

    PubMed  CAS  Google Scholar 

  135. Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261

    PubMed  CAS  Google Scholar 

  136. Jalal S, Wretlind G, Gotoh N et al (1999) Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa. APMIS 107:1109–1116

    PubMed  CAS  Google Scholar 

  137. Jalal S, Ciofu O, Hoiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosos. Antimicrob Agents Chemother 44:710–712

    PubMed  CAS  Google Scholar 

  138. Jeannot K, Sobel ML, El Garch F et al (2005) Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 187: 5341–5346

    PubMed  CAS  Google Scholar 

  139. Jeannot K, Elsen S, Kohler T et al (2008) Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462

    PubMed  CAS  Google Scholar 

  140. Jellen-Ritter AS, Kern WV (2001) Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants selected with a fluoroquinolone. Antimicrob Agents Chemother 45:1467–1472

    PubMed  CAS  Google Scholar 

  141. Jerse AE, Sharma ND, Simms AN et al (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71: 5576–5582

    PubMed  CAS  Google Scholar 

  142. Jiang X, Zhang W, Zhang Y et al (2008) Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11

    PubMed  CAS  Google Scholar 

  143. Join-Lambert OF, Michea-Hamzehpour M, Kohler T et al (2001) Differential selection of ­multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob Agents Chemother 45:571–576

    PubMed  CAS  Google Scholar 

  144. Kaatz GW, Moudgal VV, Seo SM (2002) Identification and characterization of a novel efflux-related multidrug resistance phenotype in Staphylococcus aureus. J Antimicrob Chemother 50:833–838

    PubMed  CAS  Google Scholar 

  145. Kaatz GW, Moudgal VV, Seo SM et al (2003) Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int J Antimicrob Agents 22:254–261

    PubMed  CAS  Google Scholar 

  146. Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49:1857–1864

    PubMed  CAS  Google Scholar 

  147. Kaczmarek FS, Gootz TD, Dib-Hajj F et al (2004) Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 48:1630–1639

    PubMed  CAS  Google Scholar 

  148. Kallman O, Motakefi A, Wretlind B et al (2008) Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. J Antimicrob Chemother 62:986–990

    PubMed  Google Scholar 

  149. Karatzas KA, Webber MA, Jorgensen F et al (2007) Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60:947–955

    PubMed  CAS  Google Scholar 

  150. Karatzas KA, Randall LP, Webber M et al (2008) Phenotypic and proteomic characterization of multiply antibiotic-resistant variants of Salmonella enterica serovar Typhimurium selected following exposure to disinfectants. Appl Environ Microbiol 74:1508–1516

    PubMed  CAS  Google Scholar 

  151. Keeney D, Ruzin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 13:1–6

    PubMed  CAS  Google Scholar 

  152. Keeney D, Ruzin A, McAleese F et al (2008) MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 61:46–53

    PubMed  CAS  Google Scholar 

  153. Kehrenberg C, Catry B, Haesebrouck F et al (2005) tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother 56:403–406

    PubMed  CAS  Google Scholar 

  154. Kehrenberg C, de Jong A, Friederichs S et al (2007) Molecular mechanisms of decreased susceptibility to fluoroquinolones in avian Salmonella serovars and their mutants selected during the determination of mutant prevention concentrations. J Antimicrob Chemother 59:886–892

    PubMed  CAS  Google Scholar 

  155. Kern WV, Steinke P, Schumacher A et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 57:339–343

    PubMed  CAS  Google Scholar 

  156. Kim SY, Shin SJ, Song CH et al (2008) Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. FEMS Microbiol Lett 282:282–289

    PubMed  CAS  Google Scholar 

  157. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644

    PubMed  CAS  Google Scholar 

  158. Koga T, Masuda N, Kakuta M et al (2008) Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:849–854

    Google Scholar 

  159. Köhler T, Epp SF, Curty LK et al (1999) Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305

    PubMed  Google Scholar 

  160. Koronakis V, Sharff A, Koronakis E et al (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    PubMed  CAS  Google Scholar 

  161. Kriengkauykiat J, Porter E, Lomovskaya O et al (2005) Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:565–570

    PubMed  CAS  Google Scholar 

  162. Krishnamoorthy G, Tikhonova EB, Zgurskaya HI (2008) Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 190:691–698

    PubMed  CAS  Google Scholar 

  163. Kumar A, Worobec EA (2005) Cloning, sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens. Antimicrob Agents Chemother 49:1495–1501

    PubMed  CAS  Google Scholar 

  164. Kumar A, Chua KL, Schweizer HP (2006) Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 50:3460–3463

    PubMed  CAS  Google Scholar 

  165. Kurincic M, Botteldoorn N, Herman L et al (2007) Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. Int J Food Microbiol 120:186–190

    PubMed  CAS  Google Scholar 

  166. Kutschke A, De Jonge BL (2005) Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother 49:3009–3010

    PubMed  CAS  Google Scholar 

  167. Langsrud S, Sundheim G, Holck AL (2004) Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 96:201–208

    PubMed  CAS  Google Scholar 

  168. Lebel S, Bouttier S, Lambert T (2004) The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett 238:93–100

    PubMed  CAS  Google Scholar 

  169. Lechner D, Gibbons S, Bucar F (2008) Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62:345–348

    PubMed  CAS  Google Scholar 

  170. Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92(Suppl):65S–71S

    PubMed  Google Scholar 

  171. Li Y, Dannelly HK (2006) Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance. Arch Microbiol 185:255–262

    PubMed  CAS  Google Scholar 

  172. Li X-Z, Zhang L, Poole K (2002) SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343

    PubMed  CAS  Google Scholar 

  173. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homologue to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33

    PubMed  CAS  Google Scholar 

  174. Li Y, Mima T, Komori Y et al (2003) A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 52:572–575

    PubMed  CAS  Google Scholar 

  175. Li X, Zolli-Juran M, Cechetto JD et al (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 11:1423–1430

    PubMed  CAS  Google Scholar 

  176. Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423

    PubMed  CAS  Google Scholar 

  177. Li DW, Onishi M, Kishino T et al (2008) Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae. Biol Pharm Bull 31:577–582

    PubMed  CAS  Google Scholar 

  178. Lin J, Martinez A (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 58:966–972

    PubMed  CAS  Google Scholar 

  179. Lin J, Michel LO, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131

    PubMed  CAS  Google Scholar 

  180. Lin J, Sahin O, Michel LO et al (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71: 4250–4259

    PubMed  CAS  Google Scholar 

  181. Lin J, Cagliero C, Guo B et al (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424

    PubMed  CAS  Google Scholar 

  182. Lin J, Yan M, Sahin O et al (2007) Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 51:1678–1686

    PubMed  CAS  Google Scholar 

  183. Littlejohn TG, Paulsen IT, Gillespie MT et al (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 74:259–265

    PubMed  CAS  Google Scholar 

  184. Liu JH, Deng YT, Zeng ZL et al (2008) Co-prevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr and AAC(6′)-Ib-cr among 16 S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 52(8): 2992–2993

    PubMed  CAS  Google Scholar 

  185. Livermore DM (2001) Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47:247–250

    PubMed  CAS  Google Scholar 

  186. Livermore DM, Mushtaq S, Warner M (2005) Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. J Antimicrob Chemother 55:306–311

    PubMed  CAS  Google Scholar 

  187. Llanes C, Hocquet D, Vogne C et al (2004) Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48:1797–1802

    PubMed  CAS  Google Scholar 

  188. Lobedanz S, Bokma E, Symmons MF et al (2007) A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci USA 104:4612–4617

    PubMed  CAS  Google Scholar 

  189. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic–a vision for applied use. Biochem Pharmacol 71:910–918

    PubMed  CAS  Google Scholar 

  190. Lomovskaya O, Watkins W (2001) Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 3:225–236

    PubMed  CAS  Google Scholar 

  191. Lomovskaya O, Lee A, Hoshino K et al (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:1340–1346

    PubMed  CAS  Google Scholar 

  192. Lomovskaya O, Warren MS, Lee A et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116

    PubMed  CAS  Google Scholar 

  193. Long F, Rouquette-Loughlin C, Shafer WM et al (2008) Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52:3052–3060

    PubMed  CAS  Google Scholar 

  194. Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476

    PubMed  CAS  Google Scholar 

  195. Luna VA, Cousin S Jr, Whittington WL et al (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 44:2503–2506

    PubMed  CAS  Google Scholar 

  196. Luthje P, Schwarz S (2007) Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int J Antimicrob Agents 29:528–535

    PubMed  Google Scholar 

  197. Lynch AS (2006) Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 71:949–956

    PubMed  CAS  Google Scholar 

  198. Mah TF, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    PubMed  CAS  Google Scholar 

  199. Mahamoud A, Chevalier J, Davin-Regli A et al (2006) Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 7:843–847

    PubMed  CAS  Google Scholar 

  200. Mahamoud A, Chevalier J, Alibert-Franco S et al (2007) Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223–1229

    PubMed  CAS  Google Scholar 

  201. Mallea M, Mahamoud A, Chevalier J et al (2003) Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805

    PubMed  CAS  Google Scholar 

  202. Mamelli L, Amoros JP, Pages JM et al (2003) A phenylalanine-arginine β-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents 22:237–241

    PubMed  CAS  Google Scholar 

  203. Mamelli L, Demoulin E, Prouzet-Mauleon V et al (2007) Prevalence of efflux activity in low-level macrolide-resistant Campylobacter species. J Antimicrob Chemother 59:327–328

    PubMed  CAS  Google Scholar 

  204. Maniati M, Ikonomidis A, Mantzana P et al (2007) A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel bla VIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. J Antimicrob Chemother 60:132–135

    PubMed  CAS  Google Scholar 

  205. Marchand I, Damier-Piolle L, Courvalin P et al (2004) Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298–3304

    PubMed  CAS  Google Scholar 

  206. Marrer E, Schad K, Satoh AT et al (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693

    PubMed  CAS  Google Scholar 

  207. Martinez A, Lin J (2006) Effect of an efflux pump inhibitor on the function of the multidrug efflux pump CmeABC and antimicrobial resistance in Campylobacter. Foodborne Pathog Dis 3:393–402

    PubMed  CAS  Google Scholar 

  208. Martínez-Martínez L, García I, Ballesta S et al (1998) Energy-dependent accumulation of fluoroquinolones in quinolone-resistant Klebsiella pneumoniae strains. Antimicrob Agents Chemother 42:1850–1852

    PubMed  Google Scholar 

  209. Martins M, Santos B, Martins A et al (2006) An instrument-free method for the demonstration of efflux pump activity of bacteria. In Vivo 20:657–664

    PubMed  Google Scholar 

  210. Masi M, Pages JM, Pradel E (2006) Production of the cryptic EefABC efflux pump in Enterobacter aerogenes chloramphenicol-resistant mutants. J Antimicrob Chemother 57:1223–1226

    PubMed  CAS  Google Scholar 

  211. Masuda N, Gotoh N, Ishii C et al (1999) Interplay between chromosomal β-lactamase and the MexAB-OprM efflux system in intrinsic resistance to β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:400–402

    PubMed  CAS  Google Scholar 

  212. Masuda N, Sakagawa E, Ohya S et al (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327

    PubMed  CAS  Google Scholar 

  213. Masuda N, Sakagawa E, Ohya S et al (2000) Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246

    PubMed  CAS  Google Scholar 

  214. Matsuo T, Hayashi K, Morita Y et al (2007) VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. Microbiology 153:4129–4137

    PubMed  CAS  Google Scholar 

  215. Matsuo T, Chen J, Minato Y et al (2008) SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 190:648–654

    PubMed  CAS  Google Scholar 

  216. Mazzariol A, Zuliani J, Cornaglia G et al (2002) AcrAB efflux system: expression and contribution to fluoroquinolone resistance in Klebsiella spp. Antimicrob Agents Chemother 46:3984–3986

    PubMed  CAS  Google Scholar 

  217. McAleese F, Petersen P, Ruzin A et al (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871

    PubMed  CAS  Google Scholar 

  218. McBain AJ, Rickard AH, Gilbert P (2002) Possible implications of biocide accumulation in the environment on the prevalence of bacterial antibiotic resistance. J Ind Microbiol Biotechnol 29:326–330

    PubMed  CAS  Google Scholar 

  219. McMurry LM, Oethinger M, Levy SB (1998) Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 166:305–309

    PubMed  CAS  Google Scholar 

  220. Mesaros N, Glupczynski Y, Avrain L et al (2007) A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 59:378–386

    PubMed  CAS  Google Scholar 

  221. Michalopoulos A, Fotakis D, Virtzili S et al (2008) Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir Med 102:407–412

    PubMed  Google Scholar 

  222. Miller AA, Bundy GL, Mott JE et al (2008) Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 52:2806–2812

    PubMed  CAS  Google Scholar 

  223. Mima T, Sekiya H, Mizushima T et al (2005) Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 49:999–1002

    PubMed  CAS  Google Scholar 

  224. Minato Y, Shahcheraghi F, Ogawa W et al (2008) Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol Pharm Bull 31: 516–519

    PubMed  CAS  Google Scholar 

  225. Moken MC, McMurry LM, Levy SB (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772

    PubMed  CAS  Google Scholar 

  226. Morgan-Linnell SK, Becnel BL, Steffen D et al (2008) Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob Agents Chemother 53(1):235–241

    PubMed  Google Scholar 

  227. Morita Y, Kataoka A, Shiota S et al (2000) NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182:6694–6697

    PubMed  CAS  Google Scholar 

  228. Morita Y, Murata T, Mima T et al (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 5:991–994

    Google Scholar 

  229. Morita Y, Sobel ML, Poole K (2006) Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 188:1847–1855

    PubMed  CAS  Google Scholar 

  230. Murakami S (2008) Multidrug efflux transporter, AcrB-the pumping mechanism. Curr Opin Struct Biol 18:459–465

    PubMed  CAS  Google Scholar 

  231. Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179

    PubMed  CAS  Google Scholar 

  232. Mushtaq S, Ge Y, Livermore DM (2004) Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 48:3086–3092

    PubMed  CAS  Google Scholar 

  233. Nakayama K, Ishida Y, Ohtsuka M et al (2003) MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorg Med Chem Lett 13:4201–4204

    PubMed  CAS  Google Scholar 

  234. Nakayama K, Ishida Y, Ohtsuka M et al (2003) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: achieving activity in vivo through the use of alternative scaffolds. Bioorg Med Chem Lett 13:4205–4208

    PubMed  CAS  Google Scholar 

  235. Nakayama K, Kawato H, Watanabe J et al (2004) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: Optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg Med Chem Lett 14:475–479

    PubMed  CAS  Google Scholar 

  236. Nakayama K, Kuru N, Ohtsuka M et al (2004) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety. Bioorg Med Chem Lett 14:2493–2497

    PubMed  CAS  Google Scholar 

  237. Nehme D, Poole K (2005) Interaction of the MexA and MexB components of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB. Antimicrob Agents Chemother 49:4375–4378

    PubMed  CAS  Google Scholar 

  238. Nehme D, Poole K (2007) Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 189:6118–6127

    PubMed  CAS  Google Scholar 

  239. Nehme D, Li XZ, Elliot R et al (2004) Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 186: 2973–2983

    PubMed  CAS  Google Scholar 

  240. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253

    PubMed  CAS  Google Scholar 

  241. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    PubMed  CAS  Google Scholar 

  242. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141

    PubMed  CAS  Google Scholar 

  243. Norman A, Hansen LH, She Q et al (2008) Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 60:59–74

    PubMed  CAS  Google Scholar 

  244. Ochs MM, McCusker MP, Bains M et al (1999) Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 43:1085–1090

    PubMed  CAS  Google Scholar 

  245. Oethinger M, Kern WV, Jellen-Ritter AS et al (2000) Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10–13

    PubMed  CAS  Google Scholar 

  246. Ojo KK, Ulep C, Van Kirk N et al (2004) The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob Agents Chemother 48:3451–3456

    PubMed  CAS  Google Scholar 

  247. Ojo KK, Striplin MJ, Ulep CC et al (2006) Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob Agents Chemother 50:1089–1091

    PubMed  CAS  Google Scholar 

  248. Olliver A, Valle M, Chaslus-Dancla E et al (2004) Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238:267–272

    PubMed  CAS  Google Scholar 

  249. Pages JM, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11:382–389

    PubMed  CAS  Google Scholar 

  250. Pamp SJ, Gjermansen M, Johansen HK et al (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240

    PubMed  CAS  Google Scholar 

  251. Pang Y, Brown BA, Steingrube VA et al (1994) Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrob Agents Chemother 38:1408–1412

    PubMed  CAS  Google Scholar 

  252. Pankey GA (2005) Tigecycline. J Antimicrob Chemother 56:470–480

    PubMed  CAS  Google Scholar 

  253. Pankuch GA, Lin G, Appelbaum PC (2005) Activity of five quinolones, three macrolides and telithromycin against 12 Haemophilus influenzae strains with different resistance phenotypes. Clin Microbiol Infect 11:1040–1044

    PubMed  CAS  Google Scholar 

  254. Pannek S, Higgins PG, Steinke P et al (2006) Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-β-naphthylamide. J Antimicrob Chemother 57:970–974

    PubMed  CAS  Google Scholar 

  255. Pasca MR, Guglierame P, De Rossi E et al (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49:4775–4777

    PubMed  CAS  Google Scholar 

  256. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    PubMed  CAS  Google Scholar 

  257. Payot S, Avrain L, Magras C et al (2004) Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance, in French poultry and pig isolates of Campylobacter coli. Int J Antimicrob Agents 23:468–472

    PubMed  CAS  Google Scholar 

  258. Payot S, Bolla JM, Corcoran D et al (2006) Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect 8:1967–1971

    PubMed  CAS  Google Scholar 

  259. Pazhani GP, Niyogi SK, Singh AK et al (2008) Molecular characterization of multidrug-resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. J Med Microbiol 57:856–863

    PubMed  CAS  Google Scholar 

  260. Peleg AY, Potoski BA, Rea R et al (2006) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59:128–131

    PubMed  Google Scholar 

  261. Peleg AY, Adams J, Paterson DL (2007) Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51:2065–2069

    PubMed  CAS  Google Scholar 

  262. Perez A, Canle D, Latasa C et al (2007) Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrob Agents Chemother 51:3247–3253

    PubMed  CAS  Google Scholar 

  263. Peric M, Bozdogan B, Jacobs MR et al (2003) Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 47:1017–1022

    PubMed  CAS  Google Scholar 

  264. Peric M, Bozdogan B, Galderisi C et al (2004) Inability of L22 ribosomal protein alteration to increase macrolide MICs in the absence of efflux mechanism in Haemophilus influenzae HMC-S. J Antimicrob Chemother 54:393–400

    PubMed  CAS  Google Scholar 

  265. Perichon B, Courvalin P, Galimand M (2007) Transferable resistance to aminoglycosides by methylation of G1405 in 16 S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469

    PubMed  CAS  Google Scholar 

  266. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636

    PubMed  CAS  Google Scholar 

  267. Piddock LJV, Hall MC, Bellido F et al (1992) A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1057–1061

    PubMed  CAS  Google Scholar 

  268. Ping Y, Ogawa W, Kuroda T et al (2007) Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 30:1962–1964

    PubMed  CAS  Google Scholar 

  269. Poelarends G, Mazurkiewicz P, Konings W (2002) Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta 1555:1

    PubMed  CAS  Google Scholar 

  270. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264

    PubMed  CAS  Google Scholar 

  271. Poole K (2004) Efflux pumps. In: Ramos J-L (ed) Pseudomonas, vol I, Genomics, life style and molecular architecture. Kluwer Academic/Plenum, New York, pp 635–674

    Google Scholar 

  272. Poole K (2004) Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12–26

    PubMed  CAS  Google Scholar 

  273. Poole K (2004) Resistance to β-lactam antibiotics. Cell Mol Life Sci 61:2200–2223

    PubMed  CAS  Google Scholar 

  274. Poole K (2004) Uninhibited antibiotic target discovery via chemical genetics. Nat Biotechnol 22:1528–1529

    PubMed  CAS  Google Scholar 

  275. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487

    PubMed  CAS  Google Scholar 

  276. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51

    PubMed  CAS  Google Scholar 

  277. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    PubMed  CAS  Google Scholar 

  278. Poole K (2008) Bacteria multidrug efflux pumps serve other functions. Microbe 3:179–185

    Google Scholar 

  279. Poole K, Lomovskaya O (2006) Can efflux inhibitors really counter resistance? Drug Discov Today: Therapeutuc Strategies 3:145–152

    Google Scholar 

  280. Poole K, Srikumar R (2001) Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem 1:59–71

    PubMed  CAS  Google Scholar 

  281. Pournaras S, Maniati M, Spanakis N et al (2005) Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with bla VIM endemicity. J Antimicrob Chemother 56:761–764

    PubMed  CAS  Google Scholar 

  282. Pradel E, Pages JM (2002) The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 46:2640–2643

    PubMed  CAS  Google Scholar 

  283. Prouty AM, Brodsky IE, Falkow S et al (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150:775–783

    PubMed  CAS  Google Scholar 

  284. Pumbwe L, Randall LP, Woodward MJ et al (2004) Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 54:341–347

    PubMed  CAS  Google Scholar 

  285. Pumbwe L, Chang A, Smith RL et al (2006) Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 58:543–548

    PubMed  CAS  Google Scholar 

  286. Pumbwe L, Ueda O, Yoshimura F et al (2006) Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 58:37–46

    PubMed  CAS  Google Scholar 

  287. Pumbwe L, Skilbeck CA, Nakano V et al (2007) Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 43:78–87

    PubMed  CAS  Google Scholar 

  288. Pumbwe L, Skilbeck CA, Wexler HM (2007) Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60:1288–1297

    PubMed  CAS  Google Scholar 

  289. Pumbwe L, Chang A, Smith RL et al (2007) BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 13:96–101

    PubMed  CAS  Google Scholar 

  290. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    PubMed  CAS  Google Scholar 

  291. Quale J, Bratu S, Gupta J et al (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50:1633–1641

    PubMed  CAS  Google Scholar 

  292. Rafii F, Park M (2008) Detection and characterization of an ABC transporter in Clostridium hathewayi. Arch Microbiol 190:417–426

    PubMed  CAS  Google Scholar 

  293. Rahman MM, Matsuo T, Ogawa W et al (2007) Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 51:1061–1070

    PubMed  CAS  Google Scholar 

  294. Ramon-Garcia S, Martin C, De Rossi E et al (2007) Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother 59:544–547

    PubMed  CAS  Google Scholar 

  295. Randall LP, Cooles SW, Sayers AR et al (2001) Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 50:919–924

    PubMed  CAS  Google Scholar 

  296. Randall LP, Ridley AM, Cooles SW et al (2003) Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J Antimicrob Chemother 52:507–510

    PubMed  CAS  Google Scholar 

  297. Randall LP, Cooles SW, Piddock LJ et al (2004) Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J Antimicrob Chemother 54:621–627

    PubMed  CAS  Google Scholar 

  298. Randall LP, Cooles SW, Coldham NG et al (2007) Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 60: 1273–1280

    PubMed  CAS  Google Scholar 

  299. Ratnam I, Franklin C, Spelman DW (2007) In vitro activities of ‘new’ and ‘conventional’ antibiotics against multi-drug resistant Gram negative bacteria from patients in the intensive care unit. Pathology 39:586–588

    PubMed  CAS  Google Scholar 

  300. Renau TE, Leger R, Filonova L et al (2003) Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett 13:2755–2758

    PubMed  CAS  Google Scholar 

  301. Reyes J, Hidalgo M, Diaz L et al (2007) Characterization of macrolide resistance in Gram-positive cocci from Colombian hospitals: a countrywide surveillance. Int J Infect Dis 11: 329–336

    PubMed  CAS  Google Scholar 

  302. Ricci V, Tzakas P, Buckley A et al (2006) Ciprofloxacin-resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 50:38–42

    PubMed  CAS  Google Scholar 

  303. Roberts MC (2004) Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. Curr Drug Targets Infect Disord 4:207–215

    PubMed  CAS  Google Scholar 

  304. Roberts MC (2004) Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28:47–62

    PubMed  CAS  Google Scholar 

  305. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    PubMed  CAS  Google Scholar 

  306. Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159

    PubMed  CAS  Google Scholar 

  307. Robertson GT, Doyle TB, Du Q et al (2007) A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 189:6870–6881

    PubMed  CAS  Google Scholar 

  308. Rosenberg EY, Bertenthal D, Nilles ML et al (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619

    PubMed  CAS  Google Scholar 

  309. Rouquette-Loughlin CE, Balthazar JT, Shafer WM (2005) Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56:856–860

    PubMed  CAS  Google Scholar 

  310. Ruzin A, Keeney D, Bradford PA (2005) AcrAB efflux pump plays a role in decreased ­susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 49:791–793

    PubMed  CAS  Google Scholar 

  311. Ruzin A, Visalli MA, Keeney D et al (2005) Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49:1017–1022

    PubMed  CAS  Google Scholar 

  312. Ruzin A, Keeney D, Bradford PA (2007) AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 59:1001–1004

    PubMed  CAS  Google Scholar 

  313. Saenz Y, Ruiz J, Zarazaga M et al (2004) Effect of the efflux pump inhibitor Phe-Arg-β-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother 53:544–545

    PubMed  CAS  Google Scholar 

  314. Saito R, Sato K, Kumita W et al (2006) Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis. J Antimicrob Chemother 58:673–677

    PubMed  CAS  Google Scholar 

  315. Sanchez P, Le U, Martinez JL (2003) The efflux pump inhibitor Phe-Arg-β-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. J Antimicrob Chemother 51:1042–1045

    PubMed  CAS  Google Scholar 

  316. Sanchez P, Moreno E, Martinez JL (2005) The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49:781–782

    PubMed  CAS  Google Scholar 

  317. Sanchez-Cespedes J, Vila J (2007) Partial characterisation of the acrAB locus in two Citrobacter freundii clinical isolates. Int J Antimicrob Agents 30:259–263

    PubMed  CAS  Google Scholar 

  318. Schluter A, Heuer H, Szczepanowski R et al (2005) Plasmid pB8 is closely related to the prototype IncP-1beta plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54:135–148

    PubMed  Google Scholar 

  319. Schneiders T, Amyes SG, Levy SB (2003) Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 47:2831–2837

    PubMed  CAS  Google Scholar 

  320. Schumacher A, Steinke P, Bohnert JA et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 57:344–348

    PubMed  CAS  Google Scholar 

  321. Schumacher A, Trittler R, Bohnert JA et al (2006) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264

    PubMed  Google Scholar 

  322. Schwarz S, Kehrenberg C, Doublet B et al (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542

    PubMed  CAS  Google Scholar 

  323. Schweizer HP (1998) Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 42:394–398

    PubMed  CAS  Google Scholar 

  324. Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7

    PubMed  CAS  Google Scholar 

  325. Seeger MA, Schiefner A, Eicher T et al (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298

    PubMed  CAS  Google Scholar 

  326. Seeger MA, Diederichs K, Eicher T et al (2008) The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 9:729–749

    PubMed  CAS  Google Scholar 

  327. Shafer WM, Balthazar JT, Hagman KE et al (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Nesseria gonorrhoeae that are resistant to fecal lipids. Microbiology 141:907–911

    PubMed  CAS  Google Scholar 

  328. Shahcheraghi F, Minato Y, Chen J et al (2007) Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm Bull 30:798–800

    PubMed  CAS  Google Scholar 

  329. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127

    PubMed  CAS  Google Scholar 

  330. Siddiqi N, Das R, Pathak N et al (2004) Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 32:109–111

    PubMed  CAS  Google Scholar 

  331. Sillerud LO, Larson RS (2005) Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr Protein Pept Sci 6:151–169

    PubMed  CAS  Google Scholar 

  332. Sinha M, Srinivasa H (2007) Mechanisms of resistance to carbapenems in meropenem- resistant Acinetobacter isolates from clinical samples. Indian J Med Microbiol 25:121–125

    PubMed  CAS  Google Scholar 

  333. Smith EE, Buckley DG, Wu Z et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492

    PubMed  CAS  Google Scholar 

  334. Sobel ML, McKay GA, Poole K (2003) Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207

    PubMed  CAS  Google Scholar 

  335. Sobel ML, Hocquet D, Cao L et al (2005) Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in lab and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1782–1786

    PubMed  CAS  Google Scholar 

  336. Sobel ML, Poole K, Neshat S (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253

    PubMed  CAS  Google Scholar 

  337. Solnik-Isaac H, Weinberger M, Tabak M et al (2007) Quinolone resistance of Salmonella enterica serovar Virchow isolates from humans and poultry in Israel: evidence for clonal expansion. J Clin Microbiol 45:2575–2579

    PubMed  CAS  Google Scholar 

  338. Spies FS, da Silva PE, Ribeiro MO et al (2008) Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother 52:2947–2949

    PubMed  CAS  Google Scholar 

  339. Srinivasan VB, Virk RK, Kaundal A et al (2006) Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 50:2428–2432

    PubMed  CAS  Google Scholar 

  340. Stavri M, Piddock LJ, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260

    PubMed  CAS  Google Scholar 

  341. Stegmeier JF, Polleichtner G, Brandes N et al (2006) Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry 45:10303–10312

    PubMed  CAS  Google Scholar 

  342. Stoitsova SO, Braun Y, Ullrich MS et al (2008) Characterization of the RND-type multidrug efflux pump MexAB-OprM from the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 74:3387–3393

    PubMed  CAS  Google Scholar 

  343. Strahilevitz J, Truong-Bolduc QC, Hooper DC (2005) DX-619, a novel des-fluoro(6) quinolone manifesting low frequency of selection of resistant Staphylococcus aureus mutants: quinolone resistance beyond modification of type II topoisomerases. Antimicrob Agents Chemother 49:5051–5057

    PubMed  CAS  Google Scholar 

  344. Stratton CW (2006) In vitro susceptibility testing versus in vivo effectiveness. Med Clin North Am 90:1077–1088

    PubMed  CAS  Google Scholar 

  345. Sugimura M, Maseda H, Hanaki H et al (2008) Macrolide antibiotic-mediated down regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144

    PubMed  CAS  Google Scholar 

  346. Szabo D, Silveira F, Hujer AM et al (2006) Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 50:2833–2835

    PubMed  CAS  Google Scholar 

  347. Takeda S, Nakai T, Wakai Y et al (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:826–830

    PubMed  CAS  Google Scholar 

  348. Tam VH, Chang KT, LaRocco MT et al (2007) Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 58:309–314

    PubMed  CAS  Google Scholar 

  349. Tauch A, Schluter A, Bischoff N et al (2003) The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 268: 570–584

    PubMed  CAS  Google Scholar 

  350. Tavio MM, Vila J, Perilli M et al (2004) Enhanced active efflux, repression of porin synthesis and development of Mar phenotype by diazepam in two enterobacteria strains. J Med Microbiol 53:1119–1122

    PubMed  CAS  Google Scholar 

  351. Thompson SA, Maani EV, Lindell AH et al (2007) Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 73:2199–2206

    PubMed  CAS  Google Scholar 

  352. Thorarensen A, Presley-Bodnar AL, Marotti KR et al (2001) 3-Arylpiperidines as potentiators of existing antibacterial agents. Bioorg Med Chem Lett 11:1903–1906

    PubMed  CAS  Google Scholar 

  353. Touze T, Eswaran J, Bokma E et al (2004) Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706

    PubMed  CAS  Google Scholar 

  354. Truong-Bolduc QC, Strahilevitz J, Hooper DC (2006) NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 50:1104–1107

    PubMed  CAS  Google Scholar 

  355. Tu QV, McGuckin MA, Mendz GL (2008) Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 57:795–802

    PubMed  CAS  Google Scholar 

  356. Tzeng YL, Ambrose KD, Zughaier S et al (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396

    PubMed  CAS  Google Scholar 

  357. Udani RA, Levy SB (2006) MarA-like regulator of multidrug resistance in Yersinia pestis. Antimicrob Agents Chemother 50:2971–2975

    PubMed  CAS  Google Scholar 

  358. Ueda O, Wexler HM, Hirai K et al (2005) Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 49:2807–2815

    PubMed  CAS  Google Scholar 

  359. Valentine SC, Contreras D, Tan S et al (2008) Phenotypic and molecular characterization of Acinetobacter baumannii clinical isolates from nosocomial outbreaks in Los Angeles County. J Clin Microbiol 46:2499–2507

    PubMed  CAS  Google Scholar 

  360. Van Bambeke F, Pages JM, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 1:157–175

    PubMed  Google Scholar 

  361. Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624

    PubMed  CAS  Google Scholar 

  362. Visalli MA, Murphy E, Projan SJ et al (2003) AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 47:665–669

    PubMed  CAS  Google Scholar 

  363. Viveiros M, Portugal I, Bettencourt R et al (2002) Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2804–2810

    PubMed  CAS  Google Scholar 

  364. Vogne C, Aires JR, Bailly C et al (2004) Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680

    PubMed  CAS  Google Scholar 

  365. Walsh F, Amyes SG (2007) Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J Chemother 19:376–381

    PubMed  CAS  Google Scholar 

  366. Walsh C, Fanning S (2008) Antimicrobial resistance in foodborne pathogens–a cause for concern? Curr Drug Targets 9:808–815

    PubMed  CAS  Google Scholar 

  367. Warner DM, Folster JP, Shafer WM et al (2007) Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196:1804–1812

    PubMed  CAS  Google Scholar 

  368. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70:462–478

    PubMed  CAS  Google Scholar 

  369. Watkins WJ, Landaverry Y, Leger R et al (2003) The relationship between physicochemical properties, in vitro activity and pharmacokinetic profiles of analogues of diamine-containing efflux pump inhibitors. Bioorg Med Chem Lett 13:4241–4244

    PubMed  CAS  Google Scholar 

  370. Webber MA, Talukder A, Piddock LJ (2005) Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates. Antimicrob Agents Chemother 49:4390–4392

    PubMed  CAS  Google Scholar 

  371. Webber MA, Randall LP, Cooles S et al (2008) Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62:83–91

    PubMed  CAS  Google Scholar 

  372. Weber DJ, Rutala WA (2006) Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? Infect Control Hosp Epidemiol 27:1107–1119

    PubMed  Google Scholar 

  373. Weile J, Schmid RD, Bachmann TT et al (2007) DNA microarray for genotyping multidrug-resistant Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 59:325–338

    PubMed  CAS  Google Scholar 

  374. Westbrock-Wadman S, Sherman DR, Hickey MJ et al (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983

    PubMed  CAS  Google Scholar 

  375. Wierzbowski AK, Nichol K, Laing N et al (2007) Macrolide resistance mechanisms among Streptococcus pneumoniae isolated over 6 years of Canadian Respiratory Organism Susceptibility Study (CROSS) (1998 2004). J Antimicrob Chemother 60:733–740

    PubMed  CAS  Google Scholar 

  376. Wu CM, Cao JL, Zheng MH et al (2008) Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J Int Med Res 36:178–186

    PubMed  CAS  Google Scholar 

  377. Xu XJ, Su XZ, Morita Y et al (2003) Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 47:937–943

    PubMed  CAS  Google Scholar 

  378. Yamane K, Wachino J, Suzuki S et al (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360

    PubMed  CAS  Google Scholar 

  379. Yamane K, Wachino J, Suzuki S et al (2008) Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 52:1564–1566

    PubMed  CAS  Google Scholar 

  380. Yan M, Sahin O, Lin J et al (2006) Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. J Antimicrob Chemother 58:1154–1159

    PubMed  CAS  Google Scholar 

  381. Yazdankhah SP, Scheie AA, Hoiby EA et al (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90

    PubMed  CAS  Google Scholar 

  382. Yoshida T, Muratani T, Iyobe S et al (1994) Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 38: 1466–1469

    PubMed  CAS  Google Scholar 

  383. Yoshida K, Nakayama K, Kuru N et al (2006) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg Med Chem 14:1993–2004

    PubMed  CAS  Google Scholar 

  384. Yoshida K, Nakayama K, Yokomizo Y et al (2006) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: exploration of aromatic substituents. Bioorg Med Chem 14:8506–8518

    PubMed  CAS  Google Scholar 

  385. Yoshida K, Nakayama K, Ohtsuka M et al (2007) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 15:7087–7097

    PubMed  CAS  Google Scholar 

  386. Zarantonelli L, Borthagaray G, Lee EH et al (1999) Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 43: 2468–2472

    PubMed  CAS  Google Scholar 

  387. Zarantonelli L, Borthagaray G, Lee EH et al (2001) Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 47:651–654

    PubMed  CAS  Google Scholar 

  388. Zavascki AP, Goldani LZ, Li J et al (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215

    PubMed  CAS  Google Scholar 

  389. Zhanel GG, Hisanaga T, Nichol K et al (2003) Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on Streptococcus pneumoniae. Expert Opin Emerg Drugs 8:297–321

    PubMed  CAS  Google Scholar 

  390. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452

    PubMed  CAS  Google Scholar 

  391. Zhang L, Li XZ, Poole K (2001) Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother 48:549–552

    PubMed  CAS  Google Scholar 

  392. Zhang L, Li X-Z, Poole K (2001) The SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45: 3497–3503

    PubMed  CAS  Google Scholar 

  393. Zhang Y, Eric BC, Zheng SL et al (2007) Design, synthesis, and evaluation of efflux substrate-metal chelator conjugates as potential antimicrobial agents. Bioorg Med Chem Lett 17:707–711

    PubMed  CAS  Google Scholar 

  394. Zhao Q, Li X-Z, Srikumar R et al (1998) Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 42:1682–1688

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Poole, K. (2012). Efflux-Mediated Antimicrobial Resistance. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_10

Download citation

Publish with us

Policies and ethics