Advertisement

Efflux-Mediated Antimicrobial Resistance

  • Keith Poole
Chapter

Abstract

Efflux, or the energy-dependent export or exclusion of antimicrobials from bacterial cells was first reported in the early 1980s and is now recognized as an increasingly important determinant of resistance in bacterial pathogens [275, 276]. Bacterial efflux systems capable of accommodating antimicrobials generally fall into five classes: (1) the major facilitator (MF) superfamily, (2) the ATP-binding cassette (ABC) family, (3) the resistance-nodulation-division (RND) family, (4) the small multidrug resistance (SMR) family [a member of the much larger drug/metabolite transporter (DMT) superfamily] and (5) the multidrug and toxic compound extrusion (MATE) family [289].

Keywords

Antimicrobial Resistance Efflux System Macrolide Resistance Efflux Mechanism Aminoglycoside Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abouzeed YM, Baucheron S, Cloeckaert A (2008) ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52:2428–2434PubMedGoogle Scholar
  2. 2.
    Akama H, Kanemaki M, Yoshimura M et al (2004) Crystal structure of the drug-discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 17:52816–52819Google Scholar
  3. 3.
    Akama H, Matsuura T, Kashiwagi S et al (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279: 25939–25942PubMedGoogle Scholar
  4. 4.
    Akiba M, Lin J, Barton YW et al (2006) Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57:52–60PubMedGoogle Scholar
  5. 5.
    Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antbiotics and other toxic chemicals. Trends Microbiol 7:410–413PubMedGoogle Scholar
  6. 6.
    Alonso A, Martinez JL (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:3079–3086PubMedGoogle Scholar
  7. 7.
    Alonso A, Campanario E, Martinez JL (1999) Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145: 2857–2862PubMedGoogle Scholar
  8. 8.
    Andersen C, Koronakis E, Hughes C et al (2002) An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 44:1131–1139PubMedGoogle Scholar
  9. 9.
    Andre E, Bastide L, Villain-Guillot P et al (2004) A multiwell assay to isolate compounds inhibiting the assembly of the prokaryotic RNA polymerase. Assay Drug Dev Technol 2: 629–635PubMedGoogle Scholar
  10. 10.
    Antunes P, Machado J, Peixe L (2007) Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3′ conserved sequence region among Salmonella isolates. Antimicrob Agents Chemother 51:1545–1548PubMedGoogle Scholar
  11. 11.
    Bailey AM, Paulsen IT, Piddock LJ (2008) RamA confers multidrug-resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611PubMedGoogle Scholar
  12. 12.
    Ball AR, Casadei G, Samosorn S et al (2006) Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chem Biol 1:594–600PubMedGoogle Scholar
  13. 13.
    Baucheron S, Imberechts H, Chaslus-Dancla E et al (2002) The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist 8:281–289PubMedGoogle Scholar
  14. 14.
    Baucheron S, Tyler S, Boyd D et al (2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother 48:3729–3735PubMedGoogle Scholar
  15. 15.
    Begic S, Worobec EA (2008) The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. Microbiology 154:454–461PubMedGoogle Scholar
  16. 16.
    Begic S, Worobec EA (2008) Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. Can J Microbiol 54:411–416PubMedGoogle Scholar
  17. 17.
    Begum A, Rahman MM, Ogawa W et al (2005) Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957PubMedGoogle Scholar
  18. 18.
    Bina JE, Provenzano D, Wang C et al (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181PubMedGoogle Scholar
  19. 19.
    Bina XR, Lavine CL, Miller MA et al (2008) The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett 279:226–233PubMedGoogle Scholar
  20. 20.
    Bina XR, Provenzano D, Nguyen N et al (2008) Vibrio cholerae RND-family efflux systems are required for antimicrobial resistance, optimal virulence factor production and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605PubMedGoogle Scholar
  21. 21.
    Blanco M, Gutierrez-Martin CB, Rodriguez-Ferri EF et al (2006) Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother 50:702–708PubMedGoogle Scholar
  22. 22.
    Bogdanovich T, Bozdogan B, Appelbaum PC (2006) Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 50: 893–898PubMedGoogle Scholar
  23. 23.
    Bohnert JA, Kern WV (2005) Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 49:849–852PubMedGoogle Scholar
  24. 24.
    Bohnert JA, Schuster S, Fahnrich E et al (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59:1216–1222PubMedGoogle Scholar
  25. 25.
    Boutoille D, Corvec S, Caroff N et al (2004) Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β-lactam resistance. FEMS Microbiol Lett 230:143–146PubMedGoogle Scholar
  26. 26.
    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–78PubMedGoogle Scholar
  27. 27.
    Braoudaki M, Hilton AC (2004) Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett 235:305–309PubMedGoogle Scholar
  28. 28.
    Bratu S, Landman D, Martin DA et al (2008) Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob Agents Chemother 52:2999–3005PubMedGoogle Scholar
  29. 29.
    Brown DG, Swanson JK, Allen C (2007) Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 73:2777–2786PubMedGoogle Scholar
  30. 30.
    Buckley AM, Webber MA, Cooles S et al (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856PubMedGoogle Scholar
  31. 31.
    Bunikis I, Denker K, Ostberg Y et al (2008) An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4:e1000009PubMedGoogle Scholar
  32. 32.
    Burger MT, Hiebert C, Seid M et al (2006) Synthesis and antibacterial activity of novel C12 ethyl ketolides. Bioorg Med Chem 14:5592–5604PubMedGoogle Scholar
  33. 33.
    Butaye P, Cloeckaert A, Schwarz S (2003) Mobile genes coding for efflux-mediated antimicrobial resistance in gram-positive and gram-negative bacteria. Int J Antimicrob Agents 22:205–210PubMedGoogle Scholar
  34. 34.
    Cagliero C, Mouline C, Payot S et al (2005) Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 56:948–950PubMedGoogle Scholar
  35. 35.
    Cagliero C, Mouline C, Cloeckaert A et al (2006) Synergy between the efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and C. coli. Antimicrob Agents Chemother 50:3893–3896PubMedGoogle Scholar
  36. 36.
    Cagliero C, Maurel MC, Cloeckaert A et al (2007) Regulation of the expression of the CmeABC efflux pump in Campylobacter jejuni: identification of a point mutation abolishing the binding of the CmeR repressor in an in vitro-selected multidrug-resistant mutant. FEMS Microbiol Lett 267:89–94PubMedGoogle Scholar
  37. 37.
    Cagnacci S, Gualco L, Debbia E et al (2008) European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 46:2605–2612PubMedGoogle Scholar
  38. 38.
    Cai Y, Kong F, Gilbert GL (2007) Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J Clin Microbiol 45:2754–2755PubMedGoogle Scholar
  39. 39.
    Cao L, Srikumar R, Poole K (2004) MexAB-OprM hyperexpression in NalC type multidrug resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol 53:1423–1436PubMedGoogle Scholar
  40. 40.
    Capilla S, Ruiz J, Goni P et al (2004) Characterization of the molecular mechanisms of quinolone resistance in Yersinia enterocolitica O: 3 clinical isolates. J Antimicrob Chemother 53:1068–1071PubMedGoogle Scholar
  41. 41.
    Cattoir V, Poirel L, Nordmann P (2008) Plasmid-Mediated Quinolone Resistance QepA2 from Escherichia coli in France. Antimicrob Agents Chemother 52:3801–3804PubMedGoogle Scholar
  42. 42.
    Cavaco LM, Frimodt-Moller N, Hasman H et al (2008) Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. Microb Drug Resist 14:163–169PubMedGoogle Scholar
  43. 43.
    Cavallo JD, Plesiat P, Couetdic G et al (2002) Mechanisms of β-lactam resistance in Pseudomonas aeruginosa: prevalence of OprM-overproducing strains in a French multicentre study (1997). J Antimicrob Chemother 50:1039–1043PubMedGoogle Scholar
  44. 44.
    Ceccarelli D, Salvia AM, Sami J et al (2006) New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola. Antimicrob Agents Chemother 50:2493–2499PubMedGoogle Scholar
  45. 45.
    Chan YY, Tan TM, Ong YM et al (2004) BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 48:1128–1135PubMedGoogle Scholar
  46. 46.
    Chan YY, Ong YM, Chua KL (2007) Synergistic interaction between phenothiazines and antimicrobial agents against Burkholderia pseudomallei. Antimicrob Agents Chemother 51:623–630PubMedGoogle Scholar
  47. 47.
    Chang LL, Chen HF, Chang CY et al (2004) Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518–521PubMedGoogle Scholar
  48. 48.
    Chang TM, Lu PL, Li HH et al (2007) Characterization of fluoroquinolone resistance mechanisms and their correlation with the degree of resistance to clinically used fluoroquinolones among Escherichia coli isolates. J Chemother 19:488–494PubMedGoogle Scholar
  49. 49.
    Chau SL, Chu YW, Houang ET (2004) Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 48: 4054–4055PubMedGoogle Scholar
  50. 50.
    Chen J, Kuroda T, Huda MN et al (2003) An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 52:176–179PubMedGoogle Scholar
  51. 51.
    Chen S, Cui S, McDermott PF et al (2007) Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 51:535–542PubMedGoogle Scholar
  52. 52.
    Chenia HY, Pillay B, Pillay D (2006) Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother 58:1274–1278PubMedGoogle Scholar
  53. 53.
    Chevalier J, Atifi S, Eyraud A et al (2001) New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J Med Chem 44:4023–4026PubMedGoogle Scholar
  54. 54.
    Chevalier J, Bredin J, Mahamoud A et al (2004) Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 48:1043–1046PubMedGoogle Scholar
  55. 55.
    Chevalier J, Mulfinger C, Garnotel E et al (2008) Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS One 3:e3203PubMedGoogle Scholar
  56. 56.
    Chollet R, Chevalier J, Bryskier A et al (2004) The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48:3621–3624PubMedGoogle Scholar
  57. 57.
    Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260PubMedGoogle Scholar
  58. 58.
    Choudhuri BS, Bhakta S, Barik R et al (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285PubMedGoogle Scholar
  59. 59.
    Chu C, Su LH, Chu CH et al (2005) Resistance to fluoroquinolones linked to gyrA and par C mutations and overexpression of AcrAB efflux pump in Salmonella enterica serotype Choleraesuis. Microb Drug Resist 11:248–253PubMedGoogle Scholar
  60. 60.
    Chu YW, Chau SL, Houang ET (2006) Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 55:477–478PubMedGoogle Scholar
  61. 61.
    Chuanchuen R, Beinlich K, Hoang TT et al (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432PubMedGoogle Scholar
  62. 62.
    Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP (2003) High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31:124–127PubMedGoogle Scholar
  63. 63.
    Chuanchuen R, Wannaprasat W, Ajariyakhajorn K et al (2008) Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol 52:392–398PubMedGoogle Scholar
  64. 64.
    Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282PubMedGoogle Scholar
  65. 65.
    Cochetti I, Vecchi M, Mingoia M et al (2005) Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother 49:4999–5006PubMedGoogle Scholar
  66. 66.
    Colangeli R, Helb D, Sridharan S et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55:1829–1840PubMedGoogle Scholar
  67. 67.
    Cole EC, Addison RM, Rubino JR et al (2003) Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and ­nonusers. J Appl Microbiol 95:664–676PubMedGoogle Scholar
  68. 68.
    Cousin JS Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J Antimicrob Chemother 51:131–133PubMedGoogle Scholar
  69. 69.
    Cousin S Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987. Antimicrob Agents Chemother 47:3877–3880PubMedGoogle Scholar
  70. 70.
    Crosby JA, Kachlany SC (2007) TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 388:83–92PubMedGoogle Scholar
  71. 71.
    Crossman LC, Gould VC, Dow JM et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74PubMedGoogle Scholar
  72. 72.
    D’Costa VM, McGrann KM, Hughes DW et al (2006) Sampling the antibiotic resistome. Science 311:374–377PubMedGoogle Scholar
  73. 73.
    Daikos GL, Koutsolioutsou A, Tsiodras S et al (2008) Evolution of macrolide resistance in Streptococcus pneumoniae clinical isolates in the prevaccine era. Diagn Microbiol Infect Dis 60:393–398PubMedGoogle Scholar
  74. 74.
    Dalhoff A, Janjic N, Echols R (2006) Redefining penems. Biochem Pharmacol 71:1085–1095PubMedGoogle Scholar
  75. 75.
    Damier-Piolle L, Magnet S, Bremont S et al (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562PubMedGoogle Scholar
  76. 76.
    Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:3127–3134PubMedGoogle Scholar
  77. 77.
    De Rossi E, Blokpoel MC, Cantoni R et al (1998) Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob Agents Chemother 42:1931–1937PubMedGoogle Scholar
  78. 78.
    De Rossi E, Ainsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52PubMedGoogle Scholar
  79. 79.
    Dean CR, Visalli MA, Projan SJ et al (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978PubMedGoogle Scholar
  80. 80.
    Dean CR, Narayan S, Daigle DM et al (2005) Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 49:3129–3135PubMedGoogle Scholar
  81. 81.
    Deplano A, Denis O, Poirel L et al (2005) Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 43:1198–1204PubMedGoogle Scholar
  82. 82.
    Doern GV (2006) Macrolide and ketolide resistance with Streptococcus pneumoniae. Med Clin North Am 90:1109–1124PubMedGoogle Scholar
  83. 83.
    Doi Y, Yokoyama K, Yamane K et al (2004) Plasmid-mediated 16 S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother 48:491–496PubMedGoogle Scholar
  84. 84.
    Drissi M, Ahmed ZB, Dehecq B et al (2008) Antibiotic susceptibility and mechanisms of β-lactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. Med Mal Infect 38:187–191PubMedGoogle Scholar
  85. 85.
    Dupont P, Hocquet D, Jeannot K et al (2005) Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother 55:518–522PubMedGoogle Scholar
  86. 86.
    Eguchi K, Ueda Y, Kanazawa K et al (2007) The mode of action of 2-(thiazol-2-ylthio)-1β-methylcarbapenems against Pseudomonas aeruginosa: the impact of outer membrane permeability and the contribution of MexAB-OprM efflux system. J Antibiot (Tokyo) 60:129–135Google Scholar
  87. 87.
    El Amin N, Giske CG, Jalal S et al (2005) Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 113:187–196PubMedGoogle Scholar
  88. 88.
    Elkins CA, Nikaido H (2003) Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol 185:5349–5356PubMedGoogle Scholar
  89. 89.
    Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini Rev Med Chem 6: 375–386PubMedGoogle Scholar
  90. 90.
    Enriquez R, Abad R, Salcedo C et al (2008) Fluoroquinolone resistance in Neisseria meningitidis in Spain. J Antimicrob Chemother 61:286–290PubMedGoogle Scholar
  91. 91.
    Escribano I, Rodriguez JC, Llorca B et al (2007) Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 53:397–401 (Basel)PubMedGoogle Scholar
  92. 92.
    Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341PubMedGoogle Scholar
  93. 93.
    Felmingham D, Canton R, Jenkins SG (2007) Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 55:111–118PubMedGoogle Scholar
  94. 94.
    Fraud S, Campigotto AJ, Chen Z, Poole K (2008) The MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane damaging agents dependent upon the AlgU stress-response sigma factor. Antimicrob Agents Chemother 52:4478–4482PubMedGoogle Scholar
  95. 95.
    Fricke WF, Wright MS, Lindell AH et al (2008) Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate E. coli SMS-3-5. J Bacteriol 190:6779–6794PubMedGoogle Scholar
  96. 96.
    Fukuda H, Hosaka M, Iyobe S et al (1995) nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:790–792PubMedGoogle Scholar
  97. 97.
    Gad GF, El Domany RA, Zaki S et al (2007) Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother 60:1010–1017PubMedGoogle Scholar
  98. 98.
    Garcia-Cobos S, Campos J, Lazaro E et al (2007) Ampicillin-resistant non-β-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 51:2564–2573PubMedGoogle Scholar
  99. 99.
    Garvey MI, Piddock LJ (2008) The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 52:1677–1685PubMedGoogle Scholar
  100. 100.
    Ge B, McDermott PF, White DG et al (2005) Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 49:3347–3354PubMedGoogle Scholar
  101. 101.
    German N, Wei P, Kaatz GW et al (2008) Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur J Med Chem 43: 2453–2463PubMedGoogle Scholar
  102. 102.
    Ghisalberti D, Mahamoud A, Chevalier J et al (2006) Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates. Int J Antimicrob Agents 27:565–569PubMedGoogle Scholar
  103. 103.
    Gibreel A, Wetsch NM, Taylor DE (2007) Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 51:3212–3216PubMedGoogle Scholar
  104. 104.
    Gil H, Platz GJ, Forestal CA et al (2006) Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci USA 103: 12897–12902PubMedGoogle Scholar
  105. 105.
    Giske CG, Buaro L, Sundsfjord A et al (2008) Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microb Drug Resist 14:23–30PubMedGoogle Scholar
  106. 106.
    Giuliodori AM, Gualerzi CO, Soto S et al (2007) Review on bacterial stress topics. Ann N Y Acad Sci 1113:95–104PubMedGoogle Scholar
  107. 107.
    Goldman JD, White DG, Levy SB (1996) Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob Agents Chemother 40:1266–1269PubMedGoogle Scholar
  108. 108.
    Groh JL, Luo Q, Ballard JD et al (2007) Genes that enhance the ecological fitness of Shewanella oneidensis MR-1 in sediments reveal the value of antibiotic resistance. Appl Environ Microbiol 73:492–498PubMedGoogle Scholar
  109. 109.
    Guglierame P, Pasca MR, De Rossi E et al (2006) Efflux pump genes of the resistance-­nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 6:66PubMedGoogle Scholar
  110. 110.
    Gumbo T, Louie A, Liu W et al (2007) Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis 195:194–201PubMedGoogle Scholar
  111. 111.
    Gutierrez O, Juan C, Cercenado E et al (2007) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 51:4329–4335PubMedGoogle Scholar
  112. 112.
    Halling SM, Jensen AE (2006) Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23 S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol 6:84PubMedGoogle Scholar
  113. 113.
    Hamzehpour MM, Pechere J-C, Plesiat P et al (1995) OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:2392–2396PubMedGoogle Scholar
  114. 114.
    Hanninen ML, Hannula M (2007) Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 60:1251–1257PubMedGoogle Scholar
  115. 115.
    Hannula M, Hanninen ML (2008) Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 57:851–855PubMedGoogle Scholar
  116. 116.
    Hansen LH, Johannesen E, Burmolle M et al (2004) Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337PubMedGoogle Scholar
  117. 117.
    Hansen LH, Jensen LB, Sorensen HI et al (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147PubMedGoogle Scholar
  118. 118.
    Hasdemir UO, Chevalier J, Nordmann P et al (2004) Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 42:2701–2706PubMedGoogle Scholar
  119. 119.
    Henrichfreise B, Wiegand I, Pfister W et al (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070PubMedGoogle Scholar
  120. 120.
    Hernould M, Gagne S, Fournier M et al (2008) Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrob Agents Chemother 52:1559–1563PubMedGoogle Scholar
  121. 121.
    Higgins PG, Fluit AC, Milatovic D et al (2003) Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 21:409–413PubMedGoogle Scholar
  122. 122.
    Higgins PG, Fluit AC, Schmitz FJ (2003) Fluoroquinolones: structure and target sites. Curr Drug Targets 4:181–190PubMedGoogle Scholar
  123. 123.
    Higgins MK, Bokma E, Koronakis E et al (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci USA 101:9994–9999PubMedGoogle Scholar
  124. 124.
    Higgins PG, Wisplinghoff H, Stefanik D et al (2004) Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter ­baumannii. J Antimicrob Chemother 54:821–823PubMedGoogle Scholar
  125. 125.
    Hirata T, Saito A, Nishino K et al (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184PubMedGoogle Scholar
  126. 126.
    Hocquet D, Vogne C, El Garch F et al (2003) MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 47:1371–1375PubMedGoogle Scholar
  127. 127.
    Hocquet D, Nordmann P, El Garch F et al (2006) Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:1347–1351PubMedGoogle Scholar
  128. 128.
    Hu WS, Yao SM, Fung CP et al (2007) An OXA-66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in Acinetobacter baumannii. Antimicrob Agents Chemother 51:3844–3852PubMedGoogle Scholar
  129. 129.
    Huang L, Sun L, Xu G et al (2008) Differential susceptibility to carbapenems due to the AdeABC efflux pump among nosocomial outbreak isolates of Acinetobacter baumannii in a Chinese hospital. Diagn Microbiol Infect Dis 62(3):326–332PubMedGoogle Scholar
  130. 130.
    Huda N, Lee EW, Chen J et al (2003) Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob Agents Chemother 47:2413–2417PubMedGoogle Scholar
  131. 131.
    Ince D, Zhang X, Silver LC et al (2002) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of garenoxacin (BMS-284756, T-3811ME), a new desfluoroquinolone. Antimicrob Agents Chemother 46:3370–3380PubMedGoogle Scholar
  132. 132.
    Islam S, Jalal S, Wretlind B (2004) Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 10:877–883PubMedGoogle Scholar
  133. 133.
    Jacobs MR, Bajaksouzian S, Windau A et al (2004) In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob Agents Chemother 48:3338–3342PubMedGoogle Scholar
  134. 134.
    Jakics EB, Iyobe S, Hirai K et al (1992) Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:2562–2565PubMedGoogle Scholar
  135. 135.
    Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261PubMedGoogle Scholar
  136. 136.
    Jalal S, Wretlind G, Gotoh N et al (1999) Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa. APMIS 107:1109–1116PubMedGoogle Scholar
  137. 137.
    Jalal S, Ciofu O, Hoiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosos. Antimicrob Agents Chemother 44:710–712PubMedGoogle Scholar
  138. 138.
    Jeannot K, Sobel ML, El Garch F et al (2005) Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 187: 5341–5346PubMedGoogle Scholar
  139. 139.
    Jeannot K, Elsen S, Kohler T et al (2008) Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462PubMedGoogle Scholar
  140. 140.
    Jellen-Ritter AS, Kern WV (2001) Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants selected with a fluoroquinolone. Antimicrob Agents Chemother 45:1467–1472PubMedGoogle Scholar
  141. 141.
    Jerse AE, Sharma ND, Simms AN et al (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71: 5576–5582PubMedGoogle Scholar
  142. 142.
    Jiang X, Zhang W, Zhang Y et al (2008) Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11PubMedGoogle Scholar
  143. 143.
    Join-Lambert OF, Michea-Hamzehpour M, Kohler T et al (2001) Differential selection of ­multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob Agents Chemother 45:571–576PubMedGoogle Scholar
  144. 144.
    Kaatz GW, Moudgal VV, Seo SM (2002) Identification and characterization of a novel efflux-related multidrug resistance phenotype in Staphylococcus aureus. J Antimicrob Chemother 50:833–838PubMedGoogle Scholar
  145. 145.
    Kaatz GW, Moudgal VV, Seo SM et al (2003) Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int J Antimicrob Agents 22:254–261PubMedGoogle Scholar
  146. 146.
    Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49:1857–1864PubMedGoogle Scholar
  147. 147.
    Kaczmarek FS, Gootz TD, Dib-Hajj F et al (2004) Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 48:1630–1639PubMedGoogle Scholar
  148. 148.
    Kallman O, Motakefi A, Wretlind B et al (2008) Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. J Antimicrob Chemother 62:986–990PubMedGoogle Scholar
  149. 149.
    Karatzas KA, Webber MA, Jorgensen F et al (2007) Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60:947–955PubMedGoogle Scholar
  150. 150.
    Karatzas KA, Randall LP, Webber M et al (2008) Phenotypic and proteomic characterization of multiply antibiotic-resistant variants of Salmonella enterica serovar Typhimurium selected following exposure to disinfectants. Appl Environ Microbiol 74:1508–1516PubMedGoogle Scholar
  151. 151.
    Keeney D, Ruzin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 13:1–6PubMedGoogle Scholar
  152. 152.
    Keeney D, Ruzin A, McAleese F et al (2008) MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 61:46–53PubMedGoogle Scholar
  153. 153.
    Kehrenberg C, Catry B, Haesebrouck F et al (2005) tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother 56:403–406PubMedGoogle Scholar
  154. 154.
    Kehrenberg C, de Jong A, Friederichs S et al (2007) Molecular mechanisms of decreased susceptibility to fluoroquinolones in avian Salmonella serovars and their mutants selected during the determination of mutant prevention concentrations. J Antimicrob Chemother 59:886–892PubMedGoogle Scholar
  155. 155.
    Kern WV, Steinke P, Schumacher A et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 57:339–343PubMedGoogle Scholar
  156. 156.
    Kim SY, Shin SJ, Song CH et al (2008) Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. FEMS Microbiol Lett 282:282–289PubMedGoogle Scholar
  157. 157.
    Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644PubMedGoogle Scholar
  158. 158.
    Koga T, Masuda N, Kakuta M et al (2008) Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:849–854Google Scholar
  159. 159.
    Köhler T, Epp SF, Curty LK et al (1999) Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305PubMedGoogle Scholar
  160. 160.
    Koronakis V, Sharff A, Koronakis E et al (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919PubMedGoogle Scholar
  161. 161.
    Kriengkauykiat J, Porter E, Lomovskaya O et al (2005) Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:565–570PubMedGoogle Scholar
  162. 162.
    Krishnamoorthy G, Tikhonova EB, Zgurskaya HI (2008) Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 190:691–698PubMedGoogle Scholar
  163. 163.
    Kumar A, Worobec EA (2005) Cloning, sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens. Antimicrob Agents Chemother 49:1495–1501PubMedGoogle Scholar
  164. 164.
    Kumar A, Chua KL, Schweizer HP (2006) Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 50:3460–3463PubMedGoogle Scholar
  165. 165.
    Kurincic M, Botteldoorn N, Herman L et al (2007) Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. Int J Food Microbiol 120:186–190PubMedGoogle Scholar
  166. 166.
    Kutschke A, De Jonge BL (2005) Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother 49:3009–3010PubMedGoogle Scholar
  167. 167.
    Langsrud S, Sundheim G, Holck AL (2004) Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 96:201–208PubMedGoogle Scholar
  168. 168.
    Lebel S, Bouttier S, Lambert T (2004) The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett 238:93–100PubMedGoogle Scholar
  169. 169.
    Lechner D, Gibbons S, Bucar F (2008) Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62:345–348PubMedGoogle Scholar
  170. 170.
    Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92(Suppl):65S–71SPubMedGoogle Scholar
  171. 171.
    Li Y, Dannelly HK (2006) Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance. Arch Microbiol 185:255–262PubMedGoogle Scholar
  172. 172.
    Li X-Z, Zhang L, Poole K (2002) SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343PubMedGoogle Scholar
  173. 173.
    Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homologue to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33PubMedGoogle Scholar
  174. 174.
    Li Y, Mima T, Komori Y et al (2003) A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 52:572–575PubMedGoogle Scholar
  175. 175.
    Li X, Zolli-Juran M, Cechetto JD et al (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 11:1423–1430PubMedGoogle Scholar
  176. 176.
    Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423PubMedGoogle Scholar
  177. 177.
    Li DW, Onishi M, Kishino T et al (2008) Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae. Biol Pharm Bull 31:577–582PubMedGoogle Scholar
  178. 178.
    Lin J, Martinez A (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 58:966–972PubMedGoogle Scholar
  179. 179.
    Lin J, Michel LO, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131PubMedGoogle Scholar
  180. 180.
    Lin J, Sahin O, Michel LO et al (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71: 4250–4259PubMedGoogle Scholar
  181. 181.
    Lin J, Cagliero C, Guo B et al (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424PubMedGoogle Scholar
  182. 182.
    Lin J, Yan M, Sahin O et al (2007) Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 51:1678–1686PubMedGoogle Scholar
  183. 183.
    Littlejohn TG, Paulsen IT, Gillespie MT et al (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 74:259–265PubMedGoogle Scholar
  184. 184.
    Liu JH, Deng YT, Zeng ZL et al (2008) Co-prevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr and AAC(6′)-Ib-cr among 16 S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 52(8): 2992–2993PubMedGoogle Scholar
  185. 185.
    Livermore DM (2001) Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47:247–250PubMedGoogle Scholar
  186. 186.
    Livermore DM, Mushtaq S, Warner M (2005) Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. J Antimicrob Chemother 55:306–311PubMedGoogle Scholar
  187. 187.
    Llanes C, Hocquet D, Vogne C et al (2004) Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48:1797–1802PubMedGoogle Scholar
  188. 188.
    Lobedanz S, Bokma E, Symmons MF et al (2007) A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci USA 104:4612–4617PubMedGoogle Scholar
  189. 189.
    Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic–a vision for applied use. Biochem Pharmacol 71:910–918PubMedGoogle Scholar
  190. 190.
    Lomovskaya O, Watkins W (2001) Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 3:225–236PubMedGoogle Scholar
  191. 191.
    Lomovskaya O, Lee A, Hoshino K et al (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:1340–1346PubMedGoogle Scholar
  192. 192.
    Lomovskaya O, Warren MS, Lee A et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116PubMedGoogle Scholar
  193. 193.
    Long F, Rouquette-Loughlin C, Shafer WM et al (2008) Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52:3052–3060PubMedGoogle Scholar
  194. 194.
    Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476PubMedGoogle Scholar
  195. 195.
    Luna VA, Cousin S Jr, Whittington WL et al (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 44:2503–2506PubMedGoogle Scholar
  196. 196.
    Luthje P, Schwarz S (2007) Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int J Antimicrob Agents 29:528–535PubMedGoogle Scholar
  197. 197.
    Lynch AS (2006) Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 71:949–956PubMedGoogle Scholar
  198. 198.
    Mah TF, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedGoogle Scholar
  199. 199.
    Mahamoud A, Chevalier J, Davin-Regli A et al (2006) Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 7:843–847PubMedGoogle Scholar
  200. 200.
    Mahamoud A, Chevalier J, Alibert-Franco S et al (2007) Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223–1229PubMedGoogle Scholar
  201. 201.
    Mallea M, Mahamoud A, Chevalier J et al (2003) Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805PubMedGoogle Scholar
  202. 202.
    Mamelli L, Amoros JP, Pages JM et al (2003) A phenylalanine-arginine β-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents 22:237–241PubMedGoogle Scholar
  203. 203.
    Mamelli L, Demoulin E, Prouzet-Mauleon V et al (2007) Prevalence of efflux activity in low-level macrolide-resistant Campylobacter species. J Antimicrob Chemother 59:327–328PubMedGoogle Scholar
  204. 204.
    Maniati M, Ikonomidis A, Mantzana P et al (2007) A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel bla VIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. J Antimicrob Chemother 60:132–135PubMedGoogle Scholar
  205. 205.
    Marchand I, Damier-Piolle L, Courvalin P et al (2004) Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298–3304PubMedGoogle Scholar
  206. 206.
    Marrer E, Schad K, Satoh AT et al (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693PubMedGoogle Scholar
  207. 207.
    Martinez A, Lin J (2006) Effect of an efflux pump inhibitor on the function of the multidrug efflux pump CmeABC and antimicrobial resistance in Campylobacter. Foodborne Pathog Dis 3:393–402PubMedGoogle Scholar
  208. 208.
    Martínez-Martínez L, García I, Ballesta S et al (1998) Energy-dependent accumulation of fluoroquinolones in quinolone-resistant Klebsiella pneumoniae strains. Antimicrob Agents Chemother 42:1850–1852PubMedGoogle Scholar
  209. 209.
    Martins M, Santos B, Martins A et al (2006) An instrument-free method for the demonstration of efflux pump activity of bacteria. In Vivo 20:657–664PubMedGoogle Scholar
  210. 209a.
    Masi M, Pages JM, Pradel E (2006) Production of the cryptic EefABC efflux pump in Enterobacter aerogenes chloramphenicol-resistant mutants. J Antimicrob Chemother 57:1223–1226PubMedGoogle Scholar
  211. 210.
    Masuda N, Gotoh N, Ishii C et al (1999) Interplay between chromosomal β-lactamase and the MexAB-OprM efflux system in intrinsic resistance to β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:400–402PubMedGoogle Scholar
  212. 211.
    Masuda N, Sakagawa E, Ohya S et al (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327PubMedGoogle Scholar
  213. 212.
    Masuda N, Sakagawa E, Ohya S et al (2000) Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246PubMedGoogle Scholar
  214. 213.
    Matsuo T, Hayashi K, Morita Y et al (2007) VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. Microbiology 153:4129–4137PubMedGoogle Scholar
  215. 214.
    Matsuo T, Chen J, Minato Y et al (2008) SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 190:648–654PubMedGoogle Scholar
  216. 215.
    Mazzariol A, Zuliani J, Cornaglia G et al (2002) AcrAB efflux system: expression and contribution to fluoroquinolone resistance in Klebsiella spp. Antimicrob Agents Chemother 46:3984–3986PubMedGoogle Scholar
  217. 216.
    McAleese F, Petersen P, Ruzin A et al (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871PubMedGoogle Scholar
  218. 217.
    McBain AJ, Rickard AH, Gilbert P (2002) Possible implications of biocide accumulation in the environment on the prevalence of bacterial antibiotic resistance. J Ind Microbiol Biotechnol 29:326–330PubMedGoogle Scholar
  219. 218.
    McMurry LM, Oethinger M, Levy SB (1998) Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 166:305–309PubMedGoogle Scholar
  220. 219.
    Mesaros N, Glupczynski Y, Avrain L et al (2007) A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 59:378–386PubMedGoogle Scholar
  221. 220.
    Michalopoulos A, Fotakis D, Virtzili S et al (2008) Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir Med 102:407–412PubMedGoogle Scholar
  222. 221.
    Miller AA, Bundy GL, Mott JE et al (2008) Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 52:2806–2812PubMedGoogle Scholar
  223. 222.
    Mima T, Sekiya H, Mizushima T et al (2005) Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 49:999–1002PubMedGoogle Scholar
  224. 223.
    Minato Y, Shahcheraghi F, Ogawa W et al (2008) Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol Pharm Bull 31: 516–519PubMedGoogle Scholar
  225. 224.
    Moken MC, McMurry LM, Levy SB (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772PubMedGoogle Scholar
  226. 225.
    Morgan-Linnell SK, Becnel BL, Steffen D et al (2008) Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob Agents Chemother 53(1):235–241PubMedGoogle Scholar
  227. 226.
    Morita Y, Kataoka A, Shiota S et al (2000) NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182:6694–6697PubMedGoogle Scholar
  228. 227.
    Morita Y, Murata T, Mima T et al (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 5:991–994Google Scholar
  229. 228.
    Morita Y, Sobel ML, Poole K (2006) Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 188:1847–1855PubMedGoogle Scholar
  230. 229.
    Murakami S (2008) Multidrug efflux transporter, AcrB-the pumping mechanism. Curr Opin Struct Biol 18:459–465PubMedGoogle Scholar
  231. 230.
    Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179PubMedGoogle Scholar
  232. 231.
    Mushtaq S, Ge Y, Livermore DM (2004) Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 48:3086–3092PubMedGoogle Scholar
  233. 232.
    Nakayama K, Ishida Y, Ohtsuka M et al (2003) MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorg Med Chem Lett 13:4201–4204PubMedGoogle Scholar
  234. 233.
    Nakayama K, Ishida Y, Ohtsuka M et al (2003) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: achieving activity in vivo through the use of alternative scaffolds. Bioorg Med Chem Lett 13:4205–4208PubMedGoogle Scholar
  235. 234.
    Nakayama K, Kawato H, Watanabe J et al (2004) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: Optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg Med Chem Lett 14:475–479PubMedGoogle Scholar
  236. 235.
    Nakayama K, Kuru N, Ohtsuka M et al (2004) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety. Bioorg Med Chem Lett 14:2493–2497PubMedGoogle Scholar
  237. 236.
    Nehme D, Poole K (2005) Interaction of the MexA and MexB components of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB. Antimicrob Agents Chemother 49:4375–4378PubMedGoogle Scholar
  238. 237.
    Nehme D, Poole K (2007) Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 189:6118–6127PubMedGoogle Scholar
  239. 238.
    Nehme D, Li XZ, Elliot R et al (2004) Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 186: 2973–2983PubMedGoogle Scholar
  240. 239.
    Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253PubMedGoogle Scholar
  241. 240.
    Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812PubMedGoogle Scholar
  242. 241.
    Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141PubMedGoogle Scholar
  243. 242.
    Norman A, Hansen LH, She Q et al (2008) Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 60:59–74PubMedGoogle Scholar
  244. 243.
    Ochs MM, McCusker MP, Bains M et al (1999) Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 43:1085–1090PubMedGoogle Scholar
  245. 244.
    Oethinger M, Kern WV, Jellen-Ritter AS et al (2000) Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10–13PubMedGoogle Scholar
  246. 245.
    Ojo KK, Ulep C, Van Kirk N et al (2004) The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob Agents Chemother 48:3451–3456PubMedGoogle Scholar
  247. 246.
    Ojo KK, Striplin MJ, Ulep CC et al (2006) Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob Agents Chemother 50:1089–1091PubMedGoogle Scholar
  248. 247.
    Olliver A, Valle M, Chaslus-Dancla E et al (2004) Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238:267–272PubMedGoogle Scholar
  249. 248.
    Pages JM, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11:382–389PubMedGoogle Scholar
  250. 249.
    Pamp SJ, Gjermansen M, Johansen HK et al (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240PubMedGoogle Scholar
  251. 250.
    Pang Y, Brown BA, Steingrube VA et al (1994) Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrob Agents Chemother 38:1408–1412PubMedGoogle Scholar
  252. 251.
    Pankey GA (2005) Tigecycline. J Antimicrob Chemother 56:470–480PubMedGoogle Scholar
  253. 252.
    Pankuch GA, Lin G, Appelbaum PC (2005) Activity of five quinolones, three macrolides and telithromycin against 12 Haemophilus influenzae strains with different resistance phenotypes. Clin Microbiol Infect 11:1040–1044PubMedGoogle Scholar
  254. 253.
    Pannek S, Higgins PG, Steinke P et al (2006) Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-β-naphthylamide. J Antimicrob Chemother 57:970–974PubMedGoogle Scholar
  255. 254.
    Pasca MR, Guglierame P, De Rossi E et al (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49:4775–4777PubMedGoogle Scholar
  256. 255.
    Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608PubMedGoogle Scholar
  257. 256.
    Payot S, Avrain L, Magras C et al (2004) Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance, in French poultry and pig isolates of Campylobacter coli. Int J Antimicrob Agents 23:468–472PubMedGoogle Scholar
  258. 257.
    Payot S, Bolla JM, Corcoran D et al (2006) Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect 8:1967–1971PubMedGoogle Scholar
  259. 258.
    Pazhani GP, Niyogi SK, Singh AK et al (2008) Molecular characterization of multidrug-resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. J Med Microbiol 57:856–863PubMedGoogle Scholar
  260. 259.
    Peleg AY, Potoski BA, Rea R et al (2006) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59:128–131PubMedGoogle Scholar
  261. 260.
    Peleg AY, Adams J, Paterson DL (2007) Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51:2065–2069PubMedGoogle Scholar
  262. 261.
    Perez A, Canle D, Latasa C et al (2007) Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrob Agents Chemother 51:3247–3253PubMedGoogle Scholar
  263. 262.
    Peric M, Bozdogan B, Jacobs MR et al (2003) Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 47:1017–1022PubMedGoogle Scholar
  264. 263.
    Peric M, Bozdogan B, Galderisi C et al (2004) Inability of L22 ribosomal protein alteration to increase macrolide MICs in the absence of efflux mechanism in Haemophilus influenzae HMC-S. J Antimicrob Chemother 54:393–400PubMedGoogle Scholar
  265. 264.
    Perichon B, Courvalin P, Galimand M (2007) Transferable resistance to aminoglycosides by methylation of G1405 in 16 S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469PubMedGoogle Scholar
  266. 265.
    Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636PubMedGoogle Scholar
  267. 266.
    Piddock LJV, Hall MC, Bellido F et al (1992) A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1057–1061PubMedGoogle Scholar
  268. 267.
    Ping Y, Ogawa W, Kuroda T et al (2007) Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 30:1962–1964PubMedGoogle Scholar
  269. 268.
    Poelarends G, Mazurkiewicz P, Konings W (2002) Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta 1555:1PubMedGoogle Scholar
  270. 269.
    Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264PubMedGoogle Scholar
  271. 270.
    Poole K (2004) Efflux pumps. In: Ramos J-L (ed) Pseudomonas, vol I, Genomics, life style and molecular architecture. Kluwer Academic/Plenum, New York, pp 635–674Google Scholar
  272. 271.
    Poole K (2004) Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12–26PubMedGoogle Scholar
  273. 272.
    Poole K (2004) Resistance to β-lactam antibiotics. Cell Mol Life Sci 61:2200–2223PubMedGoogle Scholar
  274. 273.
    Poole K (2004) Uninhibited antibiotic target discovery via chemical genetics. Nat Biotechnol 22:1528–1529PubMedGoogle Scholar
  275. 274.
    Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487PubMedGoogle Scholar
  276. 275.
    Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51PubMedGoogle Scholar
  277. 276.
    Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176PubMedGoogle Scholar
  278. 277.
    Poole K (2008) Bacteria multidrug efflux pumps serve other functions. Microbe 3:179–185Google Scholar
  279. 278.
    Poole K, Lomovskaya O (2006) Can efflux inhibitors really counter resistance? Drug Discov Today: Therapeutuc Strategies 3:145–152Google Scholar
  280. 279.
    Poole K, Srikumar R (2001) Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem 1:59–71PubMedGoogle Scholar
  281. 280.
    Pournaras S, Maniati M, Spanakis N et al (2005) Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with bla VIM endemicity. J Antimicrob Chemother 56:761–764PubMedGoogle Scholar
  282. 281.
    Pradel E, Pages JM (2002) The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 46:2640–2643PubMedGoogle Scholar
  283. 282.
    Prouty AM, Brodsky IE, Falkow S et al (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150:775–783PubMedGoogle Scholar
  284. 283.
    Pumbwe L, Randall LP, Woodward MJ et al (2004) Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 54:341–347PubMedGoogle Scholar
  285. 284.
    Pumbwe L, Chang A, Smith RL et al (2006) Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 58:543–548PubMedGoogle Scholar
  286. 285.
    Pumbwe L, Ueda O, Yoshimura F et al (2006) Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 58:37–46PubMedGoogle Scholar
  287. 286.
    Pumbwe L, Skilbeck CA, Nakano V et al (2007) Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 43:78–87PubMedGoogle Scholar
  288. 287.
    Pumbwe L, Skilbeck CA, Wexler HM (2007) Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60:1288–1297PubMedGoogle Scholar
  289. 288.
    Pumbwe L, Chang A, Smith RL et al (2007) BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 13:96–101PubMedGoogle Scholar
  290. 289.
    Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693PubMedGoogle Scholar
  291. 290.
    Quale J, Bratu S, Gupta J et al (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50:1633–1641PubMedGoogle Scholar
  292. 291.
    Rafii F, Park M (2008) Detection and characterization of an ABC transporter in Clostridium hathewayi. Arch Microbiol 190:417–426PubMedGoogle Scholar
  293. 292.
    Rahman MM, Matsuo T, Ogawa W et al (2007) Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 51:1061–1070PubMedGoogle Scholar
  294. 293.
    Ramon-Garcia S, Martin C, De Rossi E et al (2007) Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother 59:544–547PubMedGoogle Scholar
  295. 294.
    Randall LP, Cooles SW, Sayers AR et al (2001) Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 50:919–924PubMedGoogle Scholar
  296. 295.
    Randall LP, Ridley AM, Cooles SW et al (2003) Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J Antimicrob Chemother 52:507–510PubMedGoogle Scholar
  297. 296.
    Randall LP, Cooles SW, Piddock LJ et al (2004) Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J Antimicrob Chemother 54:621–627PubMedGoogle Scholar
  298. 297.
    Randall LP, Cooles SW, Coldham NG et al (2007) Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 60: 1273–1280PubMedGoogle Scholar
  299. 298.
    Ratnam I, Franklin C, Spelman DW (2007) In vitro activities of ‘new’ and ‘conventional’ antibiotics against multi-drug resistant Gram negative bacteria from patients in the intensive care unit. Pathology 39:586–588PubMedGoogle Scholar
  300. 299.
    Renau TE, Leger R, Filonova L et al (2003) Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett 13:2755–2758PubMedGoogle Scholar
  301. 300.
    Reyes J, Hidalgo M, Diaz L et al (2007) Characterization of macrolide resistance in Gram-positive cocci from Colombian hospitals: a countrywide surveillance. Int J Infect Dis 11: 329–336PubMedGoogle Scholar
  302. 301.
    Ricci V, Tzakas P, Buckley A et al (2006) Ciprofloxacin-resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 50:38–42PubMedGoogle Scholar
  303. 302.
    Roberts MC (2004) Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. Curr Drug Targets Infect Disord 4:207–215PubMedGoogle Scholar
  304. 303.
    Roberts MC (2004) Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28:47–62PubMedGoogle Scholar
  305. 304.
    Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203PubMedGoogle Scholar
  306. 305.
    Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159PubMedGoogle Scholar
  307. 306.
    Robertson GT, Doyle TB, Du Q et al (2007) A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 189:6870–6881PubMedGoogle Scholar
  308. 307.
    Rosenberg EY, Bertenthal D, Nilles ML et al (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619PubMedGoogle Scholar
  309. 308.
    Rouquette-Loughlin CE, Balthazar JT, Shafer WM (2005) Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56:856–860PubMedGoogle Scholar
  310. 309.
    Ruzin A, Keeney D, Bradford PA (2005) AcrAB efflux pump plays a role in decreased ­susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 49:791–793PubMedGoogle Scholar
  311. 310.
    Ruzin A, Visalli MA, Keeney D et al (2005) Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49:1017–1022PubMedGoogle Scholar
  312. 311.
    Ruzin A, Keeney D, Bradford PA (2007) AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 59:1001–1004PubMedGoogle Scholar
  313. 312.
    Saenz Y, Ruiz J, Zarazaga M et al (2004) Effect of the efflux pump inhibitor Phe-Arg-β-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother 53:544–545PubMedGoogle Scholar
  314. 313.
    Saito R, Sato K, Kumita W et al (2006) Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis. J Antimicrob Chemother 58:673–677PubMedGoogle Scholar
  315. 314.
    Sanchez P, Le U, Martinez JL (2003) The efflux pump inhibitor Phe-Arg-β-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. J Antimicrob Chemother 51:1042–1045PubMedGoogle Scholar
  316. 315.
    Sanchez P, Moreno E, Martinez JL (2005) The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49:781–782PubMedGoogle Scholar
  317. 316.
    Sanchez-Cespedes J, Vila J (2007) Partial characterisation of the acrAB locus in two Citrobacter freundii clinical isolates. Int J Antimicrob Agents 30:259–263PubMedGoogle Scholar
  318. 317.
    Schluter A, Heuer H, Szczepanowski R et al (2005) Plasmid pB8 is closely related to the prototype IncP-1beta plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54:135–148PubMedGoogle Scholar
  319. 318.
    Schneiders T, Amyes SG, Levy SB (2003) Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 47:2831–2837PubMedGoogle Scholar
  320. 319.
    Schumacher A, Steinke P, Bohnert JA et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 57:344–348PubMedGoogle Scholar
  321. 320.
    Schumacher A, Trittler R, Bohnert JA et al (2006) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264PubMedGoogle Scholar
  322. 321.
    Schwarz S, Kehrenberg C, Doublet B et al (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542PubMedGoogle Scholar
  323. 322.
    Schweizer HP (1998) Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 42:394–398PubMedGoogle Scholar
  324. 323.
    Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7PubMedGoogle Scholar
  325. 324.
    Seeger MA, Schiefner A, Eicher T et al (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298PubMedGoogle Scholar
  326. 325.
    Seeger MA, Diederichs K, Eicher T et al (2008) The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 9:729–749PubMedGoogle Scholar
  327. 326.
    Shafer WM, Balthazar JT, Hagman KE et al (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Nesseria gonorrhoeae that are resistant to fecal lipids. Microbiology 141:907–911PubMedGoogle Scholar
  328. 327.
    Shahcheraghi F, Minato Y, Chen J et al (2007) Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm Bull 30:798–800PubMedGoogle Scholar
  329. 328.
    Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127PubMedGoogle Scholar
  330. 329.
    Siddiqi N, Das R, Pathak N et al (2004) Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 32:109–111PubMedGoogle Scholar
  331. 330.
    Sillerud LO, Larson RS (2005) Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr Protein Pept Sci 6:151–169PubMedGoogle Scholar
  332. 331.
    Sinha M, Srinivasa H (2007) Mechanisms of resistance to carbapenems in meropenem- resistant Acinetobacter isolates from clinical samples. Indian J Med Microbiol 25:121–125PubMedGoogle Scholar
  333. 332.
    Smith EE, Buckley DG, Wu Z et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492PubMedGoogle Scholar
  334. 333.
    Sobel ML, McKay GA, Poole K (2003) Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207PubMedGoogle Scholar
  335. 334.
    Sobel ML, Hocquet D, Cao L et al (2005) Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in lab and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1782–1786PubMedGoogle Scholar
  336. 335.
    Sobel ML, Poole K, Neshat S (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253PubMedGoogle Scholar
  337. 336.
    Solnik-Isaac H, Weinberger M, Tabak M et al (2007) Quinolone resistance of Salmonella enterica serovar Virchow isolates from humans and poultry in Israel: evidence for clonal expansion. J Clin Microbiol 45:2575–2579PubMedGoogle Scholar
  338. 337.
    Spies FS, da Silva PE, Ribeiro MO et al (2008) Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother 52:2947–2949PubMedGoogle Scholar
  339. 338.
    Srinivasan VB, Virk RK, Kaundal A et al (2006) Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 50:2428–2432PubMedGoogle Scholar
  340. 339.
    Stavri M, Piddock LJ, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260PubMedGoogle Scholar
  341. 340.
    Stegmeier JF, Polleichtner G, Brandes N et al (2006) Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry 45:10303–10312PubMedGoogle Scholar
  342. 341.
    Stoitsova SO, Braun Y, Ullrich MS et al (2008) Characterization of the RND-type multidrug efflux pump MexAB-OprM from the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 74:3387–3393PubMedGoogle Scholar
  343. 342.
    Strahilevitz J, Truong-Bolduc QC, Hooper DC (2005) DX-619, a novel des-fluoro(6) quinolone manifesting low frequency of selection of resistant Staphylococcus aureus mutants: quinolone resistance beyond modification of type II topoisomerases. Antimicrob Agents Chemother 49:5051–5057PubMedGoogle Scholar
  344. 343.
    Stratton CW (2006) In vitro susceptibility testing versus in vivo effectiveness. Med Clin North Am 90:1077–1088PubMedGoogle Scholar
  345. 344.
    Sugimura M, Maseda H, Hanaki H et al (2008) Macrolide antibiotic-mediated down regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144PubMedGoogle Scholar
  346. 345.
    Szabo D, Silveira F, Hujer AM et al (2006) Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 50:2833–2835PubMedGoogle Scholar
  347. 346.
    Takeda S, Nakai T, Wakai Y et al (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:826–830PubMedGoogle Scholar
  348. 347.
    Tam VH, Chang KT, LaRocco MT et al (2007) Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 58:309–314PubMedGoogle Scholar
  349. 348.
    Tauch A, Schluter A, Bischoff N et al (2003) The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 268: 570–584PubMedGoogle Scholar
  350. 349.
    Tavio MM, Vila J, Perilli M et al (2004) Enhanced active efflux, repression of porin synthesis and development of Mar phenotype by diazepam in two enterobacteria strains. J Med Microbiol 53:1119–1122PubMedGoogle Scholar
  351. 350.
    Thompson SA, Maani EV, Lindell AH et al (2007) Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 73:2199–2206PubMedGoogle Scholar
  352. 351.
    Thorarensen A, Presley-Bodnar AL, Marotti KR et al (2001) 3-Arylpiperidines as potentiators of existing antibacterial agents. Bioorg Med Chem Lett 11:1903–1906PubMedGoogle Scholar
  353. 352.
    Touze T, Eswaran J, Bokma E et al (2004) Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706PubMedGoogle Scholar
  354. 353.
    Truong-Bolduc QC, Strahilevitz J, Hooper DC (2006) NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 50:1104–1107PubMedGoogle Scholar
  355. 354.
    Tu QV, McGuckin MA, Mendz GL (2008) Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 57:795–802PubMedGoogle Scholar
  356. 355.
    Tzeng YL, Ambrose KD, Zughaier S et al (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396PubMedGoogle Scholar
  357. 356.
    Udani RA, Levy SB (2006) MarA-like regulator of multidrug resistance in Yersinia pestis. Antimicrob Agents Chemother 50:2971–2975PubMedGoogle Scholar
  358. 357.
    Ueda O, Wexler HM, Hirai K et al (2005) Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 49:2807–2815PubMedGoogle Scholar
  359. 358.
    Valentine SC, Contreras D, Tan S et al (2008) Phenotypic and molecular characterization of Acinetobacter baumannii clinical isolates from nosocomial outbreaks in Los Angeles County. J Clin Microbiol 46:2499–2507PubMedGoogle Scholar
  360. 359.
    Van Bambeke F, Pages JM, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 1:157–175PubMedGoogle Scholar
  361. 360.
    Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624PubMedGoogle Scholar
  362. 361.
    Visalli MA, Murphy E, Projan SJ et al (2003) AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 47:665–669PubMedGoogle Scholar
  363. 362.
    Viveiros M, Portugal I, Bettencourt R et al (2002) Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2804–2810PubMedGoogle Scholar
  364. 363.
    Vogne C, Aires JR, Bailly C et al (2004) Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680PubMedGoogle Scholar
  365. 364.
    Walsh F, Amyes SG (2007) Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J Chemother 19:376–381PubMedGoogle Scholar
  366. 365.
    Walsh C, Fanning S (2008) Antimicrobial resistance in foodborne pathogens–a cause for concern? Curr Drug Targets 9:808–815PubMedGoogle Scholar
  367. 366.
    Warner DM, Folster JP, Shafer WM et al (2007) Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196:1804–1812PubMedGoogle Scholar
  368. 367.
    Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70:462–478PubMedGoogle Scholar
  369. 368.
    Watkins WJ, Landaverry Y, Leger R et al (2003) The relationship between physicochemical properties, in vitro activity and pharmacokinetic profiles of analogues of diamine-containing efflux pump inhibitors. Bioorg Med Chem Lett 13:4241–4244PubMedGoogle Scholar
  370. 369.
    Webber MA, Talukder A, Piddock LJ (2005) Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates. Antimicrob Agents Chemother 49:4390–4392PubMedGoogle Scholar
  371. 370.
    Webber MA, Randall LP, Cooles S et al (2008) Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62:83–91PubMedGoogle Scholar
  372. 371.
    Weber DJ, Rutala WA (2006) Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? Infect Control Hosp Epidemiol 27:1107–1119PubMedGoogle Scholar
  373. 372.
    Weile J, Schmid RD, Bachmann TT et al (2007) DNA microarray for genotyping multidrug-resistant Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 59:325–338PubMedGoogle Scholar
  374. 373.
    Westbrock-Wadman S, Sherman DR, Hickey MJ et al (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983PubMedGoogle Scholar
  375. 374.
    Wierzbowski AK, Nichol K, Laing N et al (2007) Macrolide resistance mechanisms among Streptococcus pneumoniae isolated over 6 years of Canadian Respiratory Organism Susceptibility Study (CROSS) (1998 2004). J Antimicrob Chemother 60:733–740PubMedGoogle Scholar
  376. 375.
    Wu CM, Cao JL, Zheng MH et al (2008) Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J Int Med Res 36:178–186PubMedGoogle Scholar
  377. 376.
    Xu XJ, Su XZ, Morita Y et al (2003) Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 47:937–943PubMedGoogle Scholar
  378. 377.
    Yamane K, Wachino J, Suzuki S et al (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360PubMedGoogle Scholar
  379. 378.
    Yamane K, Wachino J, Suzuki S et al (2008) Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 52:1564–1566PubMedGoogle Scholar
  380. 379.
    Yan M, Sahin O, Lin J et al (2006) Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. J Antimicrob Chemother 58:1154–1159PubMedGoogle Scholar
  381. 380.
    Yazdankhah SP, Scheie AA, Hoiby EA et al (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90PubMedGoogle Scholar
  382. 381.
    Yoshida T, Muratani T, Iyobe S et al (1994) Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 38: 1466–1469PubMedGoogle Scholar
  383. 382.
    Yoshida K, Nakayama K, Kuru N et al (2006) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg Med Chem 14:1993–2004PubMedGoogle Scholar
  384. 383.
    Yoshida K, Nakayama K, Yokomizo Y et al (2006) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: exploration of aromatic substituents. Bioorg Med Chem 14:8506–8518PubMedGoogle Scholar
  385. 384.
    Yoshida K, Nakayama K, Ohtsuka M et al (2007) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 15:7087–7097PubMedGoogle Scholar
  386. 385.
    Zarantonelli L, Borthagaray G, Lee EH et al (1999) Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 43: 2468–2472PubMedGoogle Scholar
  387. 386.
    Zarantonelli L, Borthagaray G, Lee EH et al (2001) Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 47:651–654PubMedGoogle Scholar
  388. 387.
    Zavascki AP, Goldani LZ, Li J et al (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215PubMedGoogle Scholar
  389. 388.
    Zhanel GG, Hisanaga T, Nichol K et al (2003) Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on Streptococcus pneumoniae. Expert Opin Emerg Drugs 8:297–321PubMedGoogle Scholar
  390. 389.
    Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452PubMedGoogle Scholar
  391. 390.
    Zhang L, Li XZ, Poole K (2001) Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother 48:549–552PubMedGoogle Scholar
  392. 391.
    Zhang L, Li X-Z, Poole K (2001) The SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45: 3497–3503PubMedGoogle Scholar
  393. 392.
    Zhang Y, Eric BC, Zheng SL et al (2007) Design, synthesis, and evaluation of efflux substrate-metal chelator conjugates as potential antimicrobial agents. Bioorg Med Chem Lett 17:707–711PubMedGoogle Scholar
  394. 393.
    Zhao Q, Li X-Z, Srikumar R et al (1998) Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 42:1682–1688PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyQueen’s UniversityKingstonCanada

Personalised recommendations