Flexible Nanometer CMOS Low-Noise Amplifiers for the Next-Generation Software-Defined-Radio Mobile Systems

  • Edwin C. Becerra-Alvarez
  • F. Sandoval-Ibarra
  • J. M. de la Rosa
Chapter

Abstract

This chapter reviews the main circuit strategies reported so far for the implementation of reconfigurable and adaptive CMOS Low-Noise Amplifiers (LNAs) intended for multi-standard wireless telecom systems. Different performance metrics are analyzed and compared, and a number of practical design considerations are given in order to optimize the performance of these kinds of LNAs in terms of Noise Figure (NF) and S-parameter programmability, with scalable power consumption. To this purpose, a circuit design methodology is presented which combines a mathematical model with electrical simulations. As an application of the proposed design methodology, a LNA Integrated Circuit (IC) implemented in a 1-V 90-nm CMOS technology is presented. The circuit consists of a two-stage inductively degenerated common-source configuration and uses MOS-varactor based tunning networks to make the resonant frequency continuously programmable within the band of interest. This allows the LNA to target the requirements of a number of commercial licensed standards, as well as any other operation modes in between. Practical implementation issues are discussed, considering the effect of circuit parasitics associated to both the chip package and integrated inductors, capacitors, varactors, as well as technology parameter deviations. Experimental results are presented to demonstrate the correct operation of the IC, showing a continuous tuning of NF and S-parameters within a 1.75–2.48 GHz band, and featuring {NF} < 3. 7 {dB}, S 21 > 19. 6 {dB} and {IIP3} > − 9. 8 {dBm} in a frequency range of 1.75–2.23 GHz.

References

  1. 1.
    Brandolini M et al (2005) Toward multistandard mobile terminals - Fully integrated receivers requirements and architectures. IEEE Trans Microw Theor Tech 53:1026–1038CrossRefGoogle Scholar
  2. 2.
    Mak PI, Martins RP (2007) Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circ Syst Mag, Second Quarter, pp. 6–25. (ISSN: 1531-636X)Google Scholar
  3. 3.
    Vidojkovic V et al (2004) Fully-integrated DECT/Bluetooth multi-band LNA in 0.18μm CMOS. Proceedings of IEEE international symposium on circuits and systems, pp 565–568Google Scholar
  4. 4.
    Koolivand Y et al (2005) A new technique for design CMOS LNA for multi-standard receivers. Proc IEEE Int Symp Circ Syst 4:3231–3234CrossRefGoogle Scholar
  5. 5.
    Hashemi H et al (2002) Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans Microw Theor Tech 50:288–301CrossRefGoogle Scholar
  6. 6.
    Ang C-W et al (2007) A Multi-band CMOS Low Noise Amplifier for Multi-standard Wireless Receivers. Proceedings of IEEE international symposium on circuits and systems, pp 2802–2805Google Scholar
  7. 7.
    Hsieh H-H et al (2008) Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations. IEEE Trans Microw Theor Tech 56(8):1807–1816CrossRefGoogle Scholar
  8. 8.
    Ahola R (2004) A single-chip CMOS transceiver for IEEE 802.11a/b/g wireless LANs. Proc IEEE J Solid State Circ, pp 2250–2258Google Scholar
  9. 9.
    Li X, Ismail M (2002) Multi-standard CMOS wireless receivers: analysis and design. Kluwer Academic Publishers, New YorkGoogle Scholar
  10. 10.
    Li Z et al (2004) A dual-band CMOS front-end with two gain modes for wireless LAN applications. IEEE J Solid State Circ 39:2069–2073CrossRefGoogle Scholar
  11. 11.
    Wang C-S et al (2005) A multi-band multi-standard RF front-end IEEE 802.16a for IEEE 802.16a and IEEE 802.11 a/b/g applications. Proceedings of IEEE international symposium on circuits and systems (ISCAS), pp 3974–3977Google Scholar
  12. 12.
    Liscidini A et al (2006) A 0.13μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier. IEEE J Solid State Circ 41:981–989CrossRefGoogle Scholar
  13. 13.
    Wu C, Lu L (2006) A 2.9–3.5-GHz tunable low-noise amplifier. Proceedings of the 2006 IEEE silicon monolithic integrated circuits in RF systems (SiRF), pp 206–209Google Scholar
  14. 14.
    Zhan J-H et al (2006) A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications. Proceedings of IEEE solid-state circuits conference, pp 721–730Google Scholar
  15. 15.
    Martins M et al (2007) Techniques for dual-band LNA design using cascode switching and inductor magnetic coupling. Proceedings of IEEE international symposium on circuits and systems (ISCAS), pp 1449–1452Google Scholar
  16. 16.
    Vidojkovic M et al (2007) A broadband, inductorless LNA for multi-standard applications. Proceedings of European conference on circuit theory and design, pp 260–263Google Scholar
  17. 17.
    Shaeffer D et al (1997) A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid State Circ 32:745–759CrossRefGoogle Scholar
  18. 18.
    Song H et al (2008) A Sub-2 dB NF Dual-Band CMOS LNA for CDMA/WCDMA Applications. IEEE Microw Wireless Compon Lett 18:212–214CrossRefGoogle Scholar
  19. 19.
    Tividis Y (2003) Operation and modelling of the MOS transistor, 2nd edn. Oxford Press, New YorkGoogle Scholar
  20. 20.
    Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambrige University Press, CambridgeGoogle Scholar
  21. 21.
    Abou-Allam E et al (2001) Low-voltage 1.9-GHz front-end receiver in 0.5-μm CMOS technology. IEEE J Solid State Circ 36:1434–1443CrossRefGoogle Scholar
  22. 22.
    Hioe W et al (2004) 0.18μm CMOS Bluetooth analog receiver with -88-dBm sensitivity. IEEE J Solid State Circ 39:374–377CrossRefGoogle Scholar
  23. 23.
    Jarvinen J et al (2004) 2.4-GHz receiver for sensor applications. Proceedings of the European solid-state circuits conference, pp 91–94Google Scholar
  24. 24.
    Komurasaki H et al (2003) A 1.8-V operation RF CMOS transceiver for 2.4-GHz-band GFSK applications. IEEE J Solid State Circ 38:817–825CrossRefGoogle Scholar
  25. 25.
    Rogin J et al (2003) A 1.5-V 45-mW direct-conversion WCDMA receiver IC in 0.13μm CMOS. IEEE J Solid State Circ 38:2239–2248CrossRefGoogle Scholar
  26. 26.
    Sjoland H et al (2003) A merged CMOS LNA and mixer for a WCDMA receiver. IEEE J Solid State Circ 38:1045–1050CrossRefGoogle Scholar
  27. 27.
    Sivonen P et al (2006) A 1.2-V RF front-end with on-chip VCO for PCS 1900 direct conversion receiver in 0.13μm CMOS. IEEE J Solid State Circ 41:384–394CrossRefGoogle Scholar
  28. 28.
    Tiebout M et al (2002) LNA design for a fully integrated CMOS single chip UMTS transceiver. Proceedings of the European solid-state circuits conference, pp 835–838Google Scholar
  29. 29.
    Yang Y-C et al (2006) Reconfigurable SiGe low-noise amplifiers with variable miller capacitance. IEEE Trans Circ Syst 53:2567–2577CrossRefGoogle Scholar
  30. 30.
    Andreani P et al (2001) Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Trans Circ Syst II: Analog and Digit Signal Process 48:835–841CrossRefGoogle Scholar
  31. 31.
    Hsiao C-L et al (2003) A 1V fully differential CMOS LNA for 2.4GHZ application. Proceedings of the 2003 international symposium on circuits and systems (ISCAS), vol 1, pp 245–248Google Scholar
  32. 32.
    Cha C-Y et al (2002) A 5.2GHz LNA in 0.35μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. Proceedings of the European solid-state circuits conference, pp 339–342Google Scholar
  33. 33.
    Cha C-Y et al (2003) A 5.2-GHz LNA in 0.35μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. IEEE J Solid State Circ 38:669–672CrossRefGoogle Scholar
  34. 34.
    Dupuis O et al (2005) 24GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors. Proceedings of the European solid-state circuits conference, pp 89–92Google Scholar
  35. 35.
    Fujimoto R et al (2002) A 7-GHz 1.8-dB NF CMOS low-noise amplifier. IEEE J Solid State Circ 37:852–856CrossRefGoogle Scholar
  36. 36.
    Goo J-S et al (2002) A noise optimization technique for integrated low-noise amplifiers. IEEE J Solid State Circ 37:994–1002CrossRefGoogle Scholar
  37. 37.
    Han K et al (2005) Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier. IEEE J Solid State Circ 40:726–735CrossRefGoogle Scholar
  38. 38.
    Linten D et al (2004) A 5 GHz fully integrated ESD-protected low-noise amplifier in 90nm RF CMOS. Proceedings of the European solid-state circuits conference, pp 291–294Google Scholar
  39. 39.
    Linten D et al (2005) A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS. IEEE J Solid State Circ 40:1434–1442CrossRefGoogle Scholar
  40. 40.
    White JF (2004) High frequency techniques - An introduction to RF and microwave engineering. Wiley, HobokenGoogle Scholar
  41. 41.
    Everard J (2001) Fundamentals of RF circuit design with low noise oscillators. Wiley, ChichesterGoogle Scholar
  42. 42.
    Leenaerts D et al (2001) Circuit design for RF transceivers. Kluwer Academic Publishers, BostonGoogle Scholar
  43. 43.
    Stenman A-K (2001) Some design aspects on RF CMOS LNAs and mixers. PhD thesis, Lund UniversityGoogle Scholar
  44. 44.
    Fu C-T et al (2007) A 2.4 to 5.4 GHz low power CMOS reconfigurable LNA for multistandard wireless receiver. Proceedings of IEEE radio frequency integrated circuits symposium, pp 65–68Google Scholar
  45. 45.
    Wu C-R et al (2006) A 2.9–3.5-GHz tunable low-noise amplifier. Topical meeting on silicon monolithic integrated circuits in RF systems, pp 206–209Google Scholar
  46. 46.
    Kao S-W et al (2005) A low-power dual-band WLAN CMOS receiver. Proceedings of Asian solid-state circuits conference, pp 397–400Google Scholar
  47. 47.
    Tzeng F et al (2008) A multiband inductor-reuse CMOS low-noise amplifier. IEEE Trans Circ Syst II: Express Briefs 55:209–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Edwin C. Becerra-Alvarez
    • 1
    • 2
  • F. Sandoval-Ibarra
    • 3
  • J. M. de la Rosa
    • 1
  1. 1.IMSE-CNMCSIC/University of SevilleSevilleSpain
  2. 2.CUCEIUniversity of GuadalajaraGuadalajaraMexico
  3. 3.Cinvestav-Unidad GuadalajaraGuadalajaraMexico

Personalised recommendations