Advertisement

Photoelectrochemical Measurements

Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 102)

Abstract

This chapter presents an overview of several photoelectrochemical characterization techniques and the equipment needed to carry out these measurements. It starts with a detailed description of the photoelectrochemical cell and its components. A few selected cell designs are shown and discussed, and several considerations for choosing suitable photoelectrode substrates, electrolyte solutions, and counter and reference electrodes are given. This is followed by a description of two experimental setups for photocurrent measurements, one for measurements under simulated sunlight and one for wavelength-dependent (monochromatic) measurements. The components of these setups are described, with special emphasis given to the inner workings of the potentiostat and the various types and specifications of solar simulators. The information that can be obtained from photocurrent measurements, such as photocurrent onset potentials, performance limiting factors, and quantum efficiencies is described next. The final section reviews the principles, equipment, and practical considerations for Mott–Schottky measurements. Common pitfalls of impedance measurements are outlined, and several strategies and precautions to avoid or minimize measurement errors are given.

Keywords

Solar Simulator Frequency Response Analyzer Donor Density Photoelectrochemical Cell Schottky Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author gratefully acknowledges the NWO-ACTS Sustainable Hydrogen program (project 053.61.009) and the European Commission’s Framework 7 program (NanoPEC, Project 227179) for support.

References

  1. 1.
    Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)CrossRefGoogle Scholar
  2. 2.
    Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000)CrossRefGoogle Scholar
  3. 3.
    Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)Google Scholar
  4. 4.
    De Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.: Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000)CrossRefGoogle Scholar
  5. 5.
    Minami, T.: New n-type transparent conducting oxides. MRS Bull. 25, 38–44 (2000)CrossRefGoogle Scholar
  6. 6.
    Ferekides, C.S., Mamazza, R., Balasubramanian, U., Morel, D.L.: Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480, 224–229 (2005)CrossRefGoogle Scholar
  7. 7.
    Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRefGoogle Scholar
  8. 8.
    Minami, T., Miyata, T., Yamamoto, T.: Stability of transparent conducting oxide films for use at high temperatures. J. Vac. Sci. Technol. A 17, 1822–1826 (1999)CrossRefGoogle Scholar
  9. 9.
    Abe, R., Higashi, M., Domen, K.: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828–11829 (2010)CrossRefGoogle Scholar
  10. 10.
    Goto, K., Kawashima, T., Tanabe, N.: Heat-resisting TCO films for PV cells. Solar Energy Mater. Solar Cells 90, 3251–3260 (2006)CrossRefGoogle Scholar
  11. 11.
    Radiometer Analytical. http://www.radiometer-analytical.com/. Accessed 29 Aug 2011
  12. 12.
    Sawyer, D.T., Sobkowiak, A., Roberts, J.L.: Electrochemistry for Chemists. Wiley-Interscience, New York (2010)Google Scholar
  13. 13.
    Rodgers, B.: Research Solutions & Resources LLC. http://www.consultrsr.com/resources/ref/index.htm. Accessed 28 Dec 2010
  14. 14.
    Compton, R.G., Sanders, G.H.W.: Electrode Potentials. Oxford University Press, Oxford (1996)Google Scholar
  15. 15.
    Compton, R.G., Banks, C.E.: Understanding Voltammetry. World Scientific Publishing, Oxford (2007)Google Scholar
  16. 16.
    Hamann, C.H., Hamnett, A., Vielstich, W.: Electrochemistry. Wiley-VCH, Weinheim (2007)Google Scholar
  17. 17.
    Gilliam, R.J., Graydon, J.W., Kirk, D.W., Thorpe, S.J.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007)CrossRefGoogle Scholar
  18. 18.
    Bertrand, G.L.: Conductivity of ionic solutions. http://web.mst.edu/~gbert/conductivity/cond.html. Accessed 28 Dec 2010
  19. 19.
    Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001)CrossRefGoogle Scholar
  20. 20.
    Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)CrossRefGoogle Scholar
  21. 21.
    Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRefGoogle Scholar
  22. 22.
    Sayama, K., Nomura, A., Arai, T., Sugita, T., Abe, R., Yanagida, M., Oi, T., Iwasaki, Y., Abe, Y., Sugihara, H.: Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006)CrossRefGoogle Scholar
  23. 23.
    Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)Google Scholar
  24. 24.
    Solar Irradiance Data, ASTM-G173-03 (AM1.5, global tilt): http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 11 Aug 2010
  25. 25.
    Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006)CrossRefGoogle Scholar
  26. 26.
    Jenkins, F.A., White, H.E.: Fundamentals of Optics. McGraw-Hill, New York (1981)Google Scholar
  27. 27.
    Hobbs, P.C.D.: Building Electro-Optical Systems – Making It All Work. Wiley, New York (2000)CrossRefGoogle Scholar
  28. 28.
    Hecht, E.: Optics. Addison-Wesley, Reading (2001)Google Scholar
  29. 29.
    Lerner, J.M., Thevenon, A.: Optics Tutorial. http://www.horiba.com/scientific/products/optics-tutorial/. Accessed 10 Jan 2011
  30. 30.
    Oriel Monochromators: http://www.newport.com/. Accessed 10 Jan 2011
  31. 31.
    Acton Research Monochromators: http://www.princetoninstruments.com/. Accessed 29 Aug 2011
  32. 32.
    Schott Optical Filters: http://www.schott.com/advanced_optics/english/filter/index.html. Accessed 10 Jan 2011
  33. 33.
    Liang, Y.Q., Enache, C.S., van de Krol, R.: Photoelectrochemical characterization of sprayed alpha-Fe2O3 thin films: influence of Si doping and SnO2 interfacial layer. Int. J. Photoenergy (2008). doi: 10.1155/2008/739864
  34. 34.
    Kennedy, J.H., Frese Jr., K.W.: Flatband potentials and donor densities of polycrystalline alpha-Fe2O3 determined from Mott–Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978)CrossRefGoogle Scholar
  35. 35.
    Sanchez, C., Hendewerk, M., Sieber, K.D., Somorjai, G.A.: Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals. J. Solid State Chem. 61, 47–55 (1986)CrossRefGoogle Scholar
  36. 36.
    Tilley, S.D., Cornuz, M., Sivula, K., Gratzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010)CrossRefGoogle Scholar
  37. 37.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  38. 38.
    Grätzel, M.: Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8–13 (2005)CrossRefGoogle Scholar
  39. 39.
    Brillet, J., Cornuz, M., Le Formal, F., Yum, J.H., Grätzel, M., Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17–24 (2010)CrossRefGoogle Scholar
  40. 40.
    Lindquist, S.E., Finnstrom, B., Tegner, L.: Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates. J. Electrochem. Soc. 130, 351–358 (1983)CrossRefGoogle Scholar
  41. 41.
    Inoue, Y., Asai, Y., Sato, K.: Photocatalysts with tunnel structures for decomposition of water. 1. BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters. J. Chem. Soc. Faraday Trans. 90, 797–802 (1994)CrossRefGoogle Scholar
  42. 42.
    Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Inoue, Y.: RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc. 127, 4150–4151 (2005)CrossRefGoogle Scholar
  43. 43.
    Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)CrossRefGoogle Scholar
  44. 44.
    Peter, L.M., Li, J., Peat, R.: Surface recombination at semiconductor electrodes. 1. Transient and steady-state photocurrents. J. Electroanal. Chem. 165, 29–40 (1984)CrossRefGoogle Scholar
  45. 45.
    Salvador, P., Gutierrez, C.: Analysis of the transient photocurrent time behavior of a sintered n-SrTiO3 electrode in water photoelectrolysis. J. Electroanal. Chem. 160, 117–130 (1984)CrossRefGoogle Scholar
  46. 46.
    Abdi, F.F., van de Krol, R.: Efficient cobalt phosphate-catalyzed BiVO4 photoanodes for photoelectrochemical water splitting (Submitted)Google Scholar
  47. 47.
    Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., Pereira, E.C.: Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J. Phys. Chem. B 104, 2287–2298 (2000)Google Scholar
  48. 48.
    MacDonald, J.R.: Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley-Interscience, New York (1987)Google Scholar
  49. 49.
    Orazem, M., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley-Interscience, New York (2008)CrossRefGoogle Scholar
  50. 50.
    Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2. J. Electrochem. Soc. 144, 1723–1727 (1997)CrossRefGoogle Scholar
  51. 51.
    Van de Krol, R., Goossens, A., Schoonman, J.: Mott–Schottky analysis of nanometer-scale thin-film anatase TiO2 (Erratum vol. 144, pg 1723, 1997). J. Electrochem. Soc. 145, 3697–3697 (1998)CrossRefGoogle Scholar
  52. 52.
    Gomes, W.P., Cardon, F.: Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155–215 (1982)CrossRefGoogle Scholar
  53. 53.
    Morrison, S.R.: Electrochemistry of Semiconductor and Oxidized Metal Electrodes. Plenum, New York (1980)CrossRefGoogle Scholar
  54. 54.
    Goossens, A., Schoonman, J.: The impedance of surface recombination at illuminated semiconductor electrodes – a nonequilibrium approach. J. Electroanal. Chem. 289, 11–27 (1990)CrossRefGoogle Scholar
  55. 55.
    Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor states. J. Phys. Chem. C 113, 19351–19360 (2009)CrossRefGoogle Scholar
  56. 56.
    Bisquert, J., Grätzel, M., Wang, Q., Fabregat-Santiago, F.: Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J. Phys. Chem. B 110, 11284–11290 (2006)CrossRefGoogle Scholar
  57. 57.
    Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009)CrossRefGoogle Scholar
  58. 58.
    Schoonman, J., Vos, K., Blasse, G.: Donor densities in TiO2 photoelectrodes. J. Electrochem. Soc. 128, 1154–1157 (1981)CrossRefGoogle Scholar
  59. 59.
    Hsu, C.H., Mansfeld, F.: Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001)CrossRefGoogle Scholar
  60. 60.
    Dutoit, E.C., VanMeirhaeghe, R.L., Cardon, F., Gomes, W.P.: Investigation on frequency-dependence of impedance of nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2. Ber. Bunsenges. Phys. Chem. 79, 1206–1213 (1975)Google Scholar
  61. 61.
    Oskam, G., Vanmaekelbergh, D., Kelly, J.J.: A reappraisal of the frequency-dependence of the impedance of semiconductor electrodes. J. Electroanal. Chem. 315, 65–85 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Applied Sciences, Department Chemical Engineering/Materials for Energy Conversion and StorageDelft University of TechnologyDelftThe Netherlands

Personalised recommendations