Skip to main content

Non-radio Indoor Positioning Systems

  • Chapter
  • First Online:

Abstract

This chapter goes into some details on some of the non-radio technologies that have been used for locationing. A number of mechanisms such as sound/ultrasound, inertial sensors, imaging, infrared, etc. have been used. In the following, we are going to look at few that are gaining some attention for commercialization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lide DR (1986) CRC handbook of chemistry and physics, 67th edn. CRC Press, Boca Raton

    Google Scholar 

  2. ISO 9613–1:1993—Attenuation of sound during propagation outdoors—Part 1: Calculation of the absorption of sound by the atmosphere

    Google Scholar 

  3. Lopes CV, Aguiar PMQ (2010) Alternatives to speech in low bit rate communication systems. In: Proceedings of CoRR 2010

    Google Scholar 

  4. Lopes C, Aguiar P (2001) Aerial acoustic communications. In: Proceedings of the 2001 IEEE workshop on applications of signal processing to audio and acoustics, New Paltz, NY, Oct 2001

    Google Scholar 

  5. Lopes CV, Aguiar PMQ (2006) Acoustic modems for ubiquitous computing. In: IEEE pervasive computing, Oct–Dec 2006, pp 62–71

    Google Scholar 

  6. Gerasimov V, Bender W (2000) Things that talk: using sound for device-to-device and device-to-human communication. IBM Systems J 39(3–4):530–546

    Article  Google Scholar 

  7. Nakashima Y, Matsuoka H, Yoshimura T (2006) Evaluation and demonstration of acoustic OFDM. In: Proceedings of ACSSC’06, USA, Oct–Nov 2006, pp 1747–1751

    Google Scholar 

  8. Murata Y, Sato D, Itoga Y, Takayama T, Sato N, Horiguchi S (2008) New broadcasting system combined with radio broadcasting and WWW. In: 2008 IEEE international conference on web services, pp 811–813

    Google Scholar 

  9. Ward A, Jones A, Hopper A (1997) A new location technique for the active office. IEEE Personal Communications 4(5):42–47

    Article  Google Scholar 

  10. Priyantha NB, Chakraborty A, Balakrishnan H (2000) The cricket location-support system. In: 6th ACM MOBICOM, Aug 2000

    Google Scholar 

  11. Smith A, Balakrishnan H, Goraczko M, Priyantha N (2004) Tracking moving devices with the cricket location system. In: MobiSys’04: proceedings of the 2nd international conference on mobile systems, applications, and services, Boston, 2004, pp 190–202

    Google Scholar 

  12. Holm S (2005) Airborne ultrasound data communications: the core of an indoor positioning system. In: IEEE international ultrasonics symposium, Rotterdam, The Netherlands, 18–21 Sept 2005

    Google Scholar 

  13. Gonzalez JR, Bleakley CJ (2007) Robust ultrasonic spread-spectrum positioning system using a AoA/ToA method. In: IEEE international symposium on intelligent signal processing. WISP 2007

    Google Scholar 

  14. Michael McCarthy, Paul Duff, Henk L. Muller, and Cliff Randell (2006) Accessible ultrasonic positioning. In: IEEE Pervasive Computing, Oct–Dec 2006, pp 86–93

    Google Scholar 

  15. Sasaki K, Tsuritani H, Tsukamoto Y, Iwatsubo S (2011) Air-coupled ultrasonic time-of-flight measurement system using amplitude-modulated-and phase inverted driving signal for accurate distance measurements. IEICE Electron Express 6(21):1516–1521

    Article  Google Scholar 

  16. O’Reilly R, Weinberg H (2010) The five motion senses: MEMS inertial sensing to transform applications. Sensors Magazine, January 2010

    Google Scholar 

  17. Külah H, Chae J, Yazdi N, Najafi K (2006) Noise analysis and characterization of a Sigma-Delta capacitive microaccelerometer. IEEE J Solid-State Circuits 41(2):352–360

    Article  Google Scholar 

  18. Zwahlen P, Nguyen AM, Dong Y, Rudolf F, Pastre M, Schmid H (2010) Navigation grade MEMS accelerometer. In: 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS), Jan 2010, pp 631–634

    Google Scholar 

  19. Woodman OJ (2007) An introduction to inertial navigation. University of Cambridge Computer Laboratory, Technical Report # 696

    Google Scholar 

  20. Aggarwal P, Syed Z, Noureldin A, El-Sheimy N (2010) MEMS-based integrated navigation. Artech House, London

    Google Scholar 

  21. Armenise MN (2010) Chapter 6 in “advances in gyroscope technologies”. Springer, Heidelberg

    Google Scholar 

  22. Dong H (2009) Design and analysis of a MEMS Comb Vibratory gyroscope. MS Thesis, University of Bridgeport

    Google Scholar 

  23. Thompson MJ, Li M, Horsley DA (2011) Low power 3-axis Lorentz force navigation magnetometer. In: Proc IEEE MEMS, 23–27 Jan 2011

    Google Scholar 

  24. Ren D, Wu L, Yan M, Cui M, You Z, Hu M (2009) Design and analyses of a MEMS based resonant magnetometer. Sensors 9:6951–6966

    Google Scholar 

  25. Emmerich H, Schofthaler M (2000) Magnetic field measurements with a novel surface micromachined magnetic-field sensor. IEEE Trans Electron Devices 47:972–977

    Google Scholar 

  26. Preusser J, Knappe S, Gerginov V, Kitching J (2008) A microfabricated photonic magnetometer. In: Proceedings of IEEE sensors conference, Leece, Italy

    Google Scholar 

  27. Kitching J, Knappe S, Gerginov V, Shah V et al (2008) Chip-scale atomic devices: precision atomic instruments based on MEMS. In: Proc 2008 Symp Freq Stds Metrology, pp 445–453

    Google Scholar 

  28. Walder U, Bernoulli T, Wießflecker T (2009) An indoor positioning system for improved action force command and disaster management. In: Proceedings of the 6th international ISCRAM conference, Gothenburg, Sweden, May 2009

    Google Scholar 

  29. Beauregard S, Haas H (2006) Pedestrian dead reckoning: a basis for personal positioning. In: Proceedings of the 3rd workshop on positioning, navigation and communication, Hannover, Germany

    Google Scholar 

  30. Foxlin E (2005) Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput Graph Appl 25(6):38–46

    Article  Google Scholar 

  31. Jim’enez AR, Seco F, Prieto C, Guevara J (2009) A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In: 6th IEEE international symposium on intelligent signal processing, Budapest, Hungary, 26–28 Aug 2009

    Google Scholar 

  32. Steinhoff U, Schiele B (2010) Dead reckoning from the pocket—an experimental study”. In: eighth annual IEEE international conference on pervasive computing and communications (PerCom 2010), April 2010

    Google Scholar 

  33. Jin Y, Toh H-S, Soh W-S, Wong W-C (2011) A robust dead-reckoning pedestrian tracking system with low cost sensors. In: 2011 IEEE international conference on pervasive computing and communications (PerCom), Seattle, 21–25 March 2011

    Google Scholar 

  34. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I the essential algorithms. IEEE Robotics and Automation Magazine, June 2006, pp 199–110

    Google Scholar 

  35. Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): part II state of the art. IEEE Robotics and Automation Magazine, Sept 2006, pp 108–117

    Google Scholar 

  36. Ouellette R, Hirasawa K (2007) A comparison of SLAM implementations for indoor mobile robots. Waseda University, Kitakyushu, Intelligent Robots and Systems, Oct 2007, pp 1479–1484

    Google Scholar 

  37. http://www.mrpt.org

  38. Davison A (2003) Real-time simultaneous localization and mapping with a single camera. In: International conference on computer vision, pp 1403–1416

    Google Scholar 

  39. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the international conference on computer vision, Corfu (Sept 1999)

    Google Scholar 

  40. Lowe DG (2004) Distinctive image features from scale-invariant key points. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  41. Pretto A, Menegatti E, Pagello E (2007) Reliable features matching for humanoid robots. In: 7th IEEE-RAS international conference on humanoid robots, Dec 2007

    Google Scholar 

  42. Lacroix S, Mallet A, Jung I-K, Lemaire T, Sola J (2006) Vision-based slam. In: SLAM summer school 2006, Oxford

    Google Scholar 

  43. Augmented reality meets gesture recognition. MIT Technology Review, Sept 2011

    Google Scholar 

  44. Simon D (2001) Kalman filtering. Embedded Systems Programming Magazine, June 2001, pp 72–79

    Google Scholar 

  45. Weimann F, Abwerzger G, Hofmann-Wellenhof B (2007) Let’s go downtown! let’s go indoors! pedestrian navigation in obstructed environments. GPS World, Nov 2007

    Google Scholar 

  46. Randell C, Djiallis C, Muller H (2003) Personal position measurement using dead reckoning. In: Seventh IEEE international symposium on wearable computers (ISWC’03), 166 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goswami, S. (2013). Non-radio Indoor Positioning Systems. In: Indoor Location Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1377-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1377-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1376-9

  • Online ISBN: 978-1-4614-1377-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics