Advertisement

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic

Chapter

Abstract

Computer arithmetic is predominantly performed using binary arithmetic because the hardware implementations of the operations are simpler than those for decimal computation. However, many decimal fractions cannot be represented exactly as binary fractions with a finite number of bits.

Notes

Acknowledgements

This work was supported by FCT (INESC-ID multiannual funding) through the PIDDAC Program funds.

References

  1. 1.
  2. 2.
    Alfke P, New B (1997) Serial code conversion between BCD and binary. In: Xilinx application note XAPP 029Google Scholar
  3. 3.
    Cowlishaw M (2002) Densely packed decimal encoding. IEE Proc Comput Digit Tech 149(3):102–104. DOI 10.1049/ip-cdt:20020407CrossRefGoogle Scholar
  4. 4.
    Cowlishaw MF (2003) Decimal floating-point: algorism for computers. In: Proceedings IEEE 6th IEEE international symposium on computer arithmetic, pp 104–111Google Scholar
  5. 5.
    Dadda L, Nannarelli A (2008) A variant of a radix-10 combinational multiplier. In: Proceedings IEEE international symposium on circuits and systems (ISCAS), pp 3370–3373Google Scholar
  6. 6.
    Deschamps JP, Sutter G (2010) Decimal division: Algorithms and FPGA implementations. In: Proceedings IEEE southern conference on programmable logic, pp 67–72Google Scholar
  7. 7.
    Erle MA, Schulte MJ (2003) Decimal multiplication via carry-save addition. In: Proceedings IEEE 14th IEEE international conference on application specific systems, pp 348–358Google Scholar
  8. 8.
    Kenney RD, Schulte MJ, Erle MA (2004) High-frequency decimal multiplier. In: Proceedings IEEE international conference on computer design: VLSI in computers and processors, pp 26–29Google Scholar
  9. 9.
    Lang T, Nannarelli A (2006) A radix-10 combinational multiplier. In: Proceedings IEEE 40th international asilomar conference on signals, systems, and computers, pp 313–317Google Scholar
  10. 10.
    Lang T, Nannarelli A (2007) A radix-10 digit-recurrence division unit: algorithm and architecture. IEEE Transactions on Computers, 56(6):1–13MathSciNetCrossRefGoogle Scholar
  11. 11.
    Louvet N, Muller JM, Panhaleux A (2010) Newton–Raphson algorithms for floating-point division using an FMA. In: Proceedings IEEE 20th international conference on application-specific systems architectures and processors, pp 200–207Google Scholar
  12. 12.
    Muller JM (2006) Elementary functions—algorithms and implementation. Birkhauser, BaselMATHGoogle Scholar
  13. 13.
    Neto HC, Véstias MP (2008) Decimal multiplier on fpga using embedded binary multipliers. In: Proceedings IEEE 20th international conference on field programmable logic and applications, pp 197–202Google Scholar
  14. 14.
    Nikmehr H, Phillips B, Lim CC (2006) Fast decimal floating-point division. IEEE Trans VLSI Syst 14(9):951–961CrossRefGoogle Scholar
  15. 15.
    Parhami B (2000) Computer arithmetic—algorithms and hardware designs. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Rump SM, Ogita T, Oishi S (2008) Accurate floating-point summation part i: faithful rounding. SIAM J Sci Comput 31:189–224. DOI http://dx.doi.org/10.1137/050645671. URL http://dx.doi.org/10.1137/050645671 Google Scholar
  17. 17.
    Suetin PK (2001) Chebyshev polynomials, Encyclopedia of mathematics edition. Springer, BerlinGoogle Scholar
  18. 18.
    Sutter G, Todorovich E, Bioul G, Vazquez M, Deschamps JP (2009) FPGA implementations of BCD multipliers. In: Proceedings IEEE international conference on reconfigurable computing and FPGAs, pp 36–41Google Scholar
  19. 19.
    Vázquez A, Antelo E, Montuschi O (2007) A radix-10 SRT divider based on alternative BCD codings. In: Proceedings IEEE international conference on computer design, pp 280–287Google Scholar
  20. 20.
    Vázquez A, Antelo E, Montushi P (2007) A new family of high-performance parallel decimal multipliers. In: Proceedings IEEE 18th symposium on computer arithmetic, pp 195–204Google Scholar
  21. 21.
    Véstias MP, Neto HC (2010) Parallel decimal multipliers using binary multipliers. In: Proceedings IEEE southern conference on programmable logic, pp 73–78Google Scholar
  22. 22.
    Véstias MP, Neto HC (2011) Iterative decimal multiplication using binary arithmetic. In: Proceedings IEEE southern conference on programmable logic, pp 257–262Google Scholar
  23. 23.
    Wang LK, Schulte M (2004) Decimal floating-point division using newton-raphson iteration. In: Proceedings IEEE international conference on application-specific systems, Architectures and processors, pp 84–95Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.INESC-ID/ISEL/IPLLisbonPortugal
  2. 2.INESC-ID/IST/UTLLisbonPortugal

Personalised recommendations