Estimation of uncertainties in eigenspectral estimates from decaying geophysical time series

  • B. A. Bolt
  • D. R. Brillinger
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Summary

The response of many dynamical systems to an impulse is a linear combination of decaying cosines. The frequencies of the cosines have generally been estimated in geophysics by periodogram analysis and little formal indication of uncertainty has been provided. This work presents an estimation procedure by the methods of complex demodulation and nonlinear regression that specifically incorporates in the basic model the decaying aspect of the cosines (periodogram analysis does not). The use of plots of the instantaneous phase as a function of time is shown to greatly enhance resolution. Expressions for the variances of eigenfrequencies, amplitudes, phases and damping constants Q are derived by non-linear least-squares. The results are illustrated, for the problem of the free oscillations of the Earth, by computations with the record made at Trieste of the Chilean earthquake of 1960 May 22.

Keywords

Entropy Attenuation Covariance Geophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. L. & Hart, R. S., 1978. Attenuation models of the Earth, Phys. Earth planet. Interiors, 16, 289-306. CrossRefGoogle Scholar
  2. Bingham, C, Godfrey, M. D. & Tukey, J. W., 1967. Modern techniques of power spectrum estimation, IEEE Trans., AU-15, 56-66. Google Scholar
  3. Bloomfield, P., 1976. Fourier Analysis of Time Series: An Introduction, J. Wiley, New York. Google Scholar
  4. Bolt, B. A. & Brillinger, D. R., 1975. Estimation of uncertainties in fundamental frequencies of decaying geophysical time series (abstract), EOS Trans. Am, geophys. Un 56,403. Google Scholar
  5. Bolt, B. A. & Currie, R., 1975. Maximum entropy estimates of Earth torsional eigenperiods from 1960 Trieste data, Geophys. J. R. astr. Soc., 40,107-114. CrossRefGoogle Scholar
  6. Bolt, B. A. & Marussi, A., 1962. Eigenvibrations of the Earth observed at Trieste, Geophys. J. R. astr Soc., 6, 299-311. CrossRefGoogle Scholar
  7. Brillinger, D. R., 1975. Time Series Data Analysis and Theory, Holt, Rinehard & Winston, New York. Google Scholar
  8. Buland, R. & Gilbert, F., 1978. Improved resolution of complex eigenfrequencies in analytically continued seismic spectra, Geophys. J. R. astr. Soc 52, 457-470. CrossRefGoogle Scholar
  9. Burg, J. P., 1972. The relationship between maximum entropy spectra and maximum likelihood spectra, Geophysics, S7, 375-376. CrossRefGoogle Scholar
  10. Chambers, J. M., 1973. Fitting nonlinear models: numerical techniques, Biometrika, 60, 1-13. MathSciNetMATHCrossRefGoogle Scholar
  11. Dahlen, F. A., 1978. The Spectra of Unresolved Split Normal Mode Multiplets , Princeton University, Princeton, N.J. Google Scholar
  12. Den, J., 1969. Free oscillation observations through 1968,^//. seism. Soc. Am., 59, 2079-2099. Google Scholar
  13. Draper, N. R. & Smith, H., 196 6. Applied Regression Analysis, Wiley, New York. Google Scholar
  14. Dziewonski, A. M. & Gilbert, F., 1972. Observations of normal modes from 84 recordings of the Alaskan earthquakes of 1964 March 28, Geophys. 7. R. astr. Soc., 27, 393-446. Google Scholar
  15. Hannan, E. J., 1973. The estimation of frequency appl. Prob ., 10, 510-519. MathSciNetMATHCrossRefGoogle Scholar
  16. Hansen, R., 1978. Complex demodulation estimates of eigenspectral amplitudes and damping factors from the August, 1977 Indonesian earthquake, EOS (abstract), 59, 1140. Google Scholar
  17. Jennrich, R. J., 1969. Asymptotic properties of non-linear least-squares estimators, Ann. Math. Stat., 40,633-643. MathSciNetMATHCrossRefGoogle Scholar
  18. Jobert, N. & Roult, G., 1976. Periods and damping of free oscillations observed in France after sixteen earthquakes, Geophys. J. R. astr. Soc., 45, 155-176. CrossRefGoogle Scholar
  19. Lamb, H., 1920. Higher Mechanics, Cambridge Press, Cambridge. Lancaster, P., 1966. Lambda-matrices and Vibrating Systems, Pergamon, Oxford. Google Scholar
  20. Lancaster, P., 1966. Lambda-matrices and Vibrating Systems, Pergamon, Oxford.Google Scholar
  21. Nowroozi, A. A., 1974. Characteristic periods and Q for oscillations of the Earth following intermediate- focus earthquakes, / Phys. Earth, 22,1-23. Google Scholar
  22. Tukey, J. W., 1961. Discussion emphasizing the connection between analysis of variance and spectrum analysis, Technometries, 3, 1-29. CrossRefGoogle Scholar
  23. Walker, A. M., 1971. On the estimation of a harmonic component on a time series with stationary independent residulals, Biometrika, 58, 21-36 MathSciNetMATHCrossRefGoogle Scholar
  24. Whittaker, E. T., 1944. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , Dover, New York Google Scholar
  25. Whittle, P., 1954. Some recent contributions to the theory of stationary processes, Appendix 2 of A Study in the Analysis of Stationary Time Series by H. Wold, Almquist, Stockholm. Google Scholar
  26. Zadro, M. B. & Caputo, M., 1968. Spectral, bispectral analysis and Q of the free oscillations of the Earth, Suppl. Nuovo Cimento, 6, 67-81 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • B. A. Bolt
    • 1
  • D. R. Brillinger
    • 2
  1. 1.Department of Geology and GeophysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of StatisticsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations