Asymptotic properties of spectral estimates of second order

  • David R. Brillinger
Part of the Selected Works in Probability and Statistics book series (SWPS)


Let X(t) (t = 0, ± 1,... ) be a zero mean, r vector-valued, strictly stationary time series satisfying a particular assumption about the near-independence of widely separated values.


Gaussian Process Weak Convergence Asymptotic Property Asymptotic Distribution Asymptotic Normality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. ANDERSON, T. W. (1958). Introduction. to Multivariate Statistical Analysis. New York: Wiley.Google Scholar
  2. ANDERSON, T. W. & WALKER, A. M. (1964). On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process. Ann. Math. Statist. 35, 1296–1303.MathSciNetMATHCrossRefGoogle Scholar
  3. BARTLETT, M. S. (1946). On the theoretical specification of sampling properties of auto-correlated time series. J. R. Statist. Soc. Suppl. 8, 27–41.MathSciNetMATHCrossRefGoogle Scholar
  4. BARTLETT, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika 37, 1–16.MathSciNetMATHGoogle Scholar
  5. BARTLETT, M. S. (1966). An Introduction to Stochastic Processes, 2nd edition. Cambridge University Press.Google Scholar
  6. BLACKMAN, R. B. & TUKEY,.T. W. (1958). The Measurement of Power Spectra. New York: Dover.Google Scholar
  7. BRILLINGER, D. R. (1965). An introduction to polyspectra. Ann. Math. Statist. 36, 1351–74.MathSciNetMATHCrossRefGoogle Scholar
  8. BRILLINGER,D. R. (1968). Estimation of the cross-spectrum of a stationary bivariate Gaussian process from its zeros. J. R. Statist. Soc. B 30, 145–59.MathSciNetMATHGoogle Scholar
  9. BRILLINGER, D. R. & ROSENBLATT, M. (1967). Asymptotic theory of estimates of k-th order spectra. In Advanced Seminar on Spectral Analysis of Time Series (ed, B. Harris), pp. 153–88. New York: Wiley.Google Scholar
  10. EDWARDS, R. Eo (1967). Fourier Series, vol. 1. New York: Holt, Rinehart and Winston.Google Scholar
  11. GOODMAN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math. Statist. 34, 152–77.MathSciNetMATHCrossRefGoogle Scholar
  12. GRENANDER, U. & ROSENBLATT, M. (1957). Statistical Analysis of Stationary Time Series. New York: Wiley.Google Scholar
  13. HANNAN, Eo.T. (1960). Time Series Analysis. London: Methuen.Google Scholar
  14. HANNAN, E..T. (1967). The estimation of a lagged regression relation. Biometrika 54, 409–18.MathSciNetMATHGoogle Scholar
  15. IBRAGIMOV, I. A. (1963). On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl. 8, 366–401.MATHCrossRefGoogle Scholar
  16. KAWATA, T. (1959). Some convergence theorems for stationary stochastic processes. Ann. Math. Statist. 30, 1192–214.MathSciNetMATHCrossRefGoogle Scholar
  17. LAMPERTI,.T. (1962). On convergence of stochastic processes. Trans. Amer. Math. Soc. 104, 430–5.MathSciNetMATHCrossRefGoogle Scholar
  18. LEONOV, V. P. & SHIRYAEV, A. N. (1959). On a method of calculation of semi-invariants. Theory Probab. Appl. 4, 319–29.MATHCrossRefGoogle Scholar
  19. LOMNICKI, Z. A. & ZAREMBA, S. K. (1957). On some moments and distributions occurring in the theory of linear stochastic processes. Part 1. Mh, Math. 61, 318–58.MathSciNetMATHGoogle Scholar
  20. LOMNICKI, Z. A. & ZAREMBA, S. K. (1959). On some moments and distributions occurring in the theory of linear stochastic processes. Part II. Mh. Math. 63, 128–68.MathSciNetMATHCrossRefGoogle Scholar
  21. MALEVICH, T. L. (1964). The asymptotic behavior ofan estimate for the spectral function ofa stationary Gaussian process. Theory Probab. Appl. 9, 350–3.CrossRefGoogle Scholar
  22. MALEVICH, T. L. (1965). Some properties of the estimators of the spectrum of a stationary process. Theory Probab. Appl. 10, 45765.MATHCrossRefGoogle Scholar
  23. OLSHEN, R. A. (1967). Asymptotic properties of the periodogram of a discrete stationary process. J. Appl. Prob. 4, 508–28.MathSciNetMATHCrossRefGoogle Scholar
  24. PARZEN, E. (1957a). A central limit theorem for multilinear stochastic processes. Ann. Math. Statist. 28,252-5.MathSciNetMATHCrossRefGoogle Scholar
  25. PARZEN, Eo (1957 b). On consistent estimates of the spectrum of a stationary time series. Ann. Math, Statist. 28, 329–48.MathSciNetMATHGoogle Scholar
  26. PARZEN, Eo (1961). An approach to time series analysis. Ann. Math. Statist. 32, 951–89.MathSciNetMATHCrossRefGoogle Scholar
  27. RAO, S. T. (1967). On the cross periodogram of a stationary Gaussian vcctor process. Ann. Math. Statist. 38, 593–7.MathSciNetMATHCrossRefGoogle Scholar
  28. ROSENBLATT, M. (1959). Statistical analysis of stochastic processes with stationary residuals. In Studies in Probability and Statistics (ed. U. Grenander), pp. 246–75. New York: Wiley.Google Scholar
  29. ROSENBLATT, M. (1962). Asymptotic behavior of eigenvalues of Toeplitz forms. J. Math, Mech, 11, 941 50.Google Scholar
  30. SLUTSKY, E. E. (1934). Alcunc applicazioni dei coefficienti di Fourier all 'analisi delle funzioni aleat orie stazionarie. Gion. 1st. ltal. Attuari 5, 1–50.Google Scholar
  31. TuKEY, J. W. (1967). An introduction to the calculations of numerical spectrum analysis. In Advanced S eminar on Spectral Analysis of Time S eries (ed. B. Harris), pp. 25–46. New York: Wiley.Google Scholar
  32. WARBA, G. (1968). On the distribution of some statistics useful in the analysis of jointly stationary time series. Ann. Math. Statist. 39, 1849–62.MathSciNetCrossRefGoogle Scholar
  33. WALKER, A. M. (1954). The asymptotic distribution of serial correlation coefficients for autoregressive p ro cesses with dependent residuals, Pro c, Camb. Phil. Soc. 50, 60–4.MATHCrossRefGoogle Scholar
  34. WALKER, A. M. (1965). Some asymptotic results for the pcriodogram of a stationary time series, J. Aust. Math. Soc. 5, 107–28.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David R. Brillinger
    • 1
  1. 1.London School of Economics and Political ScienceLondonUK

Personalised recommendations