A Berry-Esseen Bound for Symmetric Statistics

  • W. R. van Zwet
Open Access
Part of the Selected Works in Probability and Statistics book series (SWPS)


The rate of convergence of the distribution function of a symmetric function of N independent and identically distributed random variables to its normal limit is investigated. Under appropriate moment conditions the rate is shown to be (\(O\left( {{N^{ - \frac{1}{2}}}} \right)\)). This theorem generalizes many known results for special cases and two examples are given. Possible further extensions are indicated.




  1. 1.
    Bickel, P.J.: Edgeworth expansions in nonparametric statistics. Ann. Statist. 2, 1- 20 (1974)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Callaert, H., Janssen, P.: The Berry-Esseen theorem for U-statistics. Ann. Statist. 6, 417-421 (1978)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chan, Y.-K., Wierman, J. : On the Berry-Esseen theorem for U-statistics, Ann. Probability 5, 136-139 (1977)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Efron, B., Stein, C.: The jackknife estimate of variance, Ann. Statist. 9, 586-596 (1981)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd Ed. New York: Wiley 1971Google Scholar
  6. 6.
    Helmers, R.: A Berry-Esseen theorem for linear combinations of order statistics. Ann. Probability 9, 342-347 (1981)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Helmers, R.: Edgeworth Expansions for Linear Combinations of Order Statistics. Mathematical Centre Tracts 105. Mathematisch Centrum, Amsterdam (1982)Google Scholar
  8. 8.
    Helmers, R., Van Zwet, W.R. : The Berry-Esseen bound for U-statistics. Statistical Decision Theory and Related Topics. III Vol. 1, S.S. Gupta and J.O. Berger (eds.), 497-512. New York: Academic Press 1982Google Scholar
  9. 9.
    Hoeffding, W.: A class of statistics with asymptotically normal distributions. Ann. Math. Statist. 19, 293-325 (1948)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hoeffding, W. : The strong law of large numbers for U-statistics. lnst. of Statist., Univ. of North Carolina, Mimeograph Series No. 302 (1961)Google Scholar
  11. 11.
    Karlin, S., Rinott, Y. : Applications of AN OVA type decompositions for comparisons of conditional variance statistics including jackknife estimates. Ann. Statist. 10, 485-501 (1982)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • W. R. van Zwet
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of LeidenLeidenThe Netherlands

Personalised recommendations