Skip to main content

Current Status of Practical Applications: Probiotics in Dairy Cattle

  • Chapter
  • First Online:
Direct-Fed Microbials and Prebiotics for Animals

Abstract

The gastrointestinal microbial population of dairy cattle is dense and diverse and can be utilized to reduce pathogenic bacterial populations as well as improve animal productivity and environmental effects. Because of the nature of the dairy industry, probiotic products have been widely used to enhance milk production and the feed efficiency. The individual efficacy of probiotics in dairy cattle is due to specific microbial ecological factors within the gut of the food animal and its native microflora that alter the competitive pressures of the gut. This chapter explores the ecology behind the efficacy of probiotic products against food-borne pathogens that inhabit food animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleman, M.M., D.R. Stein, D.T. Allen, E. Perry, K.V. Lehloenya, T.G. Rehberger, K.J. Mertz, D.A. Jones, and L.J. Spicer. 2007. Effects of feeding two levels of propionibacteria to dairy cows on plasma hormones and metabolites. Journal of Dairy Research 74: 146–153.

    CAS  Google Scholar 

  • Al-Qumber, M., and J.R. Tagg. 2006. Commensal bacilli inhibitory to mastitis pathogens isolated from the udder microbiota of healthy cows. Journal of Applied Microbiology 101: 1152–1160.

    CAS  Google Scholar 

  • Arthur, T.M., J.M. Bosilevac, X. Nou, S.D. Shackleford, T.L. Wheeler, and M. Koohmaraie. 2007. Comparison of the molecular genotypes of Escherichia coli O157:H7 from the hides of beef cattle in different regions of North America. Journal of Food Protection 70: 1622–1626.

    Google Scholar 

  • Barroga, A.J., R.C.D. Salas, E.A. Martin, W.G. Besa, and C.A.D.C. Santos. 2007. Efficacy of probiotics, enzymes and dried porcine solubles in swine. Philippine Agricultural Scientist 90: 71–74.

    Google Scholar 

  • Beecher, C., M. Daly, D.P. Berry, K. Klostermann, J. Flynn, W. Meaney, C. Hill, T.V. McCarthy, R.P. Ross, and L. Giblin. 2009. Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1 and IL-8 gene expression. Journal of Dairy Research 76: 340–348.

    CAS  Google Scholar 

  • Bergen, W.G., and D.B. Bates. 1984. Ionophores: Their effect on production efficiency and mode of action. Journal of Animal Science 58: 1465–1483.

    CAS  Google Scholar 

  • Boadi, D., C. Benchaar, J. Chiquette, and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science 84: 319–335.

    Google Scholar 

  • Boga, M., and M. Gorgulu. 2007. Effects of probiotics based on Lactobacillus sp. and Lactobacillus sp. plus yeast (Sacchoromyces cerevisiae) on milk yield and milk composition of dairy cows. Cuban Journal of Agricultural Science 41: 305–308.

    Google Scholar 

  • Branner, G.R., and D.A. Roth-Maier. 2006. Influence of pre-, pro-, and synbiotics on the intestinal availability of different B-vitamins. Archives of Animal Nutrition 60: 191–204.

    CAS  Google Scholar 

  • Brashears, M.M., M.L. Galyean, G.H. Loneragan, J.E. Mann, and K. Killinger-Mann. 2003a. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. Journal of Food Protection 66: 748–754.

    CAS  Google Scholar 

  • Brashears, M.M., D. Jaroni, and J. Trimble. 2003b. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. Journal of Food Protection 66: 355–363.

    CAS  Google Scholar 

  • Callaway, T.R., and S.A. Martin. 2006. Use of fungi and organic acids in production animal diets. Feedstuffs direct-fed microbial, enzyme and forage additive compendium, 8th ed, 25–33. Minneton: Miller Publishing, Inc.

    Google Scholar 

  • Callaway, T.R., T.S. Edrington, A.D. Brabban, J.E. Keen, R.C. Anderson, M.L. Rossman, M.J. Engler, K.J. Genovese, B.L. Gwartney, J.O. Reagan, T.L. Poole, R.B. Harvey, E.M. Kutter, and D.J. Nisbet. 2006. Fecal prevalence of Escherichia coli O157, Salmonella, Listeria, and bacteriophage infecting E. coli O157:H7 in feedlot cattle in the southern plains region of the United States. Foodborne Pathogens and Disease 3: 234–244.

    CAS  Google Scholar 

  • Chiquette, J. 2009. Evaluation of the protective effect of probiotics fed to dairy cows during a subacute ruminal acidosis challenge. Animal Feed Science and Technology 153: 278–291.

    CAS  Google Scholar 

  • Chiquette, J., G. Talbot, F. Markwell, N. Nili, and R.J. Forster. 2007. Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: Effect on ruminai fermentation, cellulolytic populations and in sacco digestibility. Canadian Journal of Animal Science 87: 237–249.

    Google Scholar 

  • Chiquette, J., M.J. Allison, and M.A. Rasmussen. 2008. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. Journal of Dairy Science 91: 3536–3543.

    CAS  Google Scholar 

  • Click, R.E., and C.L. van Kampen. 2009. Short communication: Progression of Johne’s disease curtailed by a probiotic. Journal of Dairy Science 92: 4846–4851.

    CAS  Google Scholar 

  • Coburn, B., G.A. Grassl, and B.B. Finlay. 2007. Salmonella, the host and disease: A brief review. Immunology and Cell Biology 85: 112–118.

    Google Scholar 

  • Collins, D.M., and G.R. Gibson. 1999. Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition 69: 1052S–1057S.

    CAS  Google Scholar 

  • Crispió, F., M. Alonso-Gómez, C. O’Loughlin, K. Klostermann, J. Flynn, S. Arkins, W. Meaney, R. Paul Ross, and C. Hill. 2008. Intramammary infusion of a live culture for treatment of bovine mastitis: Effect of live lactococci on the mammary immune response. Journal of Dairy Research 75: 374–384.

    Google Scholar 

  • Crittenden, R.G. 1999. Prebiotics. In Probiotics: A critical review, ed. G.W. Tannock, 141–156. Wymondham: UK, Horizon Scientific Press.

    Google Scholar 

  • Dawson, K.A. 1990. Designing the yeast culture of tomorrow – Mode of action of yeast culture for ruminants and non-ruminnts. Biotechnology in the Feed Industry 5: 59–75.

    Google Scholar 

  • Dawson, K.A. 1992. Current and future role of Yeast culture in animal production: A review of research over last six years. Animal Science 8: 1–23.

    Google Scholar 

  • Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, and D. Sauvant. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. Journal of Dairy Science 92: 1620–1632.

    CAS  Google Scholar 

  • DiBaise, J.K., H. Zhang, M.D. Crowell, R. Krajmalnik-Brown, G.A. Decker, and B.E. Rittmann. 2008. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings 83: 460–469.

    Google Scholar 

  • Doyle, M.P., and M.C. Erickson. 2006. Reducing the carriage of food-borne pathogens in livestock and poultry. Poultry Science 85: 960–973.

    CAS  Google Scholar 

  • Duncker, S.C., A. Lorentz, B. Schroeder, G. Breves, and S.C. Bischoff. 2006. Effect of orally administered probiotic E. coli strain Nissle 1917 on intestinal mucosal immune cells of healthy young pigs. Veterinary Immunology and Immunopathology 111: 239–250.

    CAS  Google Scholar 

  • Elam, N.A., J.F. Gleghorn, J.D. Rivera, M.L. Galyean, P.J. Defoor, M.M. Brashears, and S.M. Younts-Dahl. 2003. Effects of live cultures of Lactobacillus acidophilus (strains NP45 and NP51) and Propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and Escherichia coli strain O157 shedding of finishing beef steers. Journal of Animal Science 81: 2686–2698.

    CAS  Google Scholar 

  • Enemark, J.M.D. 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. The Veterinary Journal 176: 32–43.

    Google Scholar 

  • Federic, F., and A. Sokol. 1973. Effect of peroral application of a colicinogenic strain of Escherichia coli on the incidence of different categories of plasmids in Escherichia coli isolated from weaned piglets fed on flavomycin. Folia Microbiologica 18: 65.

    Google Scholar 

  • Finegold, S.M. 2008. Therapy and epidemiology of autism-clostridial spores as key elements. Medical Hypotheses 70: 508–511.

    Google Scholar 

  • Fuller, R. 1989. Probiotics in man and animals. The Journal of Applied Bacteriology 66: 365–378.

    CAS  Google Scholar 

  • Gomes, A.M.P., and F.X. Malcata. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science and Technology 10: 139–157.

    CAS  Google Scholar 

  • Gomez-Alarcon, R.A., C. Dudas, and J.T. Huber. 1990. Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. Journal of Dairy Science 73: 703–710.

    CAS  Google Scholar 

  • Gomez-Alarcon, R.A., J.T. Huber, G.E. Higginbotham, F. Wiersma, D. Ammon, and B. Taylor. 1991. Influence of feeding Aspergillus oryzae fermentation extract on the milk yields, eating patterns, and body temperatures of lactating cows. Journal of Dairy Science 72: 1733–1740.

    Google Scholar 

  • Harvey, R.B., R.E. Droleskey, C.L. Sheffield, T.S. Edrington, T.R. Callaway, R.C. Anderson, D.L.J. Drinnon, R.L. Ziprin, H.M. Scott, and D.J. Nisbet. 2004. Campylobacter prevalence in lactating dairy cows in the United States. Journal of Food Protection 67: 1476–1479.

    Google Scholar 

  • Hungate, R.E. 1966. The rumen and its microbes. New York: Academic.

    Google Scholar 

  • Ibekwe, A.M., P.M. Watt, C.M. Grieve, V.K. Sharma, and S.R. Lyons. 2002. Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Applied and Environmental Microbiology 68: 4853–4862.

    CAS  Google Scholar 

  • Isik, M., F. Ekimler, N. Ozen, and M.Z. Firat. 2004. Effects of using probiotics on the growth performance and health of dairy calves. Turkish Journal of Veterinary and Animal Sciences 28: 63–69.

    Google Scholar 

  • Jayne-Williams, D.J., and R. Fuller. 1971. The influence of the intestinal microflora on nutrition. In Physiology and biochemistry of the domestic food, ed. D.J. Bell and B.M. Freeman, 74–92. London: Academic Press.

    Google Scholar 

  • Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. Journal of Animal Science 73: 2483–2494.

    CAS  Google Scholar 

  • Jouany, J.P. 2006. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 96: 250–264.

    CAS  Google Scholar 

  • Kaufhold, J., H.M. Hammon, and J.W. Blum. 2000. Fructo-oligosaccharide supplementation: Effects on metabolic, endocrine and hematological traits in veal calves. Journal of Veterinary Medicine A: Physiology, Pathology, Clinical Medicine 47: 17–29.

    CAS  Google Scholar 

  • Keen, J., and R. Elder. 2000. Commercial probiotics are not effective for short-term control of enterohemorrhagic Escherichia coli O157 infection in beef cattle. Kyoto, Japan, 4th International Symposium Works. Shiga Toxin (Verocytotoxin)-producing Escherichia coli Infect., 92 (Abstr.).

    Google Scholar 

  • Koenen, M.E., J. Kramer, R. Van Der Hulst, L. Heres, S.H.M. Jeurissen, and W.J.A. Boersma. 2004. Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens. British Poultry Science 45: 355–366.

    CAS  Google Scholar 

  • Krehbiel, C.R., S.R. Rust, G. Zhang, and S.E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. Journal of Animal Science 81: E120–132.

    Google Scholar 

  • Kung, L., and A.O. Hession. 1995. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Journal of Animal Science 73: 250–256.

    CAS  Google Scholar 

  • Kung, L., E.M. Kreck, R.S. Tung, A.O. Hession, A.C. Sheperd, M.A. Cohen, H.E. Swain, and J.A.Z. Leedle. 1997. Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. Journal of Dairy Science 80: 2045–2051.

    CAS  Google Scholar 

  • Lehloenya, K.V., D.R. Stein, D.T. Allen, G.E. Selk, D.A. Jones, M.M. Aleman, T.G. Rehberger, K.J. Mertz, and L.J. Spicer. 2008. Effects of feeding yeast and propionibacteria to dairy cows on milk yield and components, and reproduction. Journal of Animal Physiology and Animal Nutrition 92: 190–202.

    CAS  Google Scholar 

  • LeJeune, J.T., M.D. Kauffman, M.D. Amstutz, and L.A. Ward. 2006. Limited effects of a commercial direct-fed microbial on weaning pig performance and gastrointestinal microbiology. Journal of Swine Health and Production 14: 247–252.

    Google Scholar 

  • Lema, M., L. Williams, and D.R. Rao. 2001. Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157:H7 in lambs by feeding microbial feed supplement. Small Ruminant Research 39: 31–39.

    Google Scholar 

  • Ley, R.E., P.J. Turnbaugh, S. Klein, and J.I. Gordon. 2006. Human gut microbes associated with obesity. Nature 444: 1022–1023.

    CAS  Google Scholar 

  • Lila, Z.A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda, and H. Itabashi. 2004. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. Journal of Animal Science 82: 1847–1854.

    CAS  Google Scholar 

  • Linn, J.G., and J. Salfer. 2006. Feed efficiency. Minneapolis: University of Minnesota. Extension Service.

    Google Scholar 

  • Lock, A.L., and D.E. Bauman. 2004. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39: 1197–1206.

    CAS  Google Scholar 

  • Losinger, W.C., and A.J. Heinrichs. 1996. Dairy operation management practices and herd milk production. Journal of Dairy Science 79: 506–514.

    CAS  Google Scholar 

  • Martin, S.A., M.N. Streeter, D.J. Nisbet, G.M. Hill, and S.E. Williams. 1999. Effects of dl-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. Journal of Animal Science 77: 1008–1015.

    CAS  Google Scholar 

  • Midilli, M., M. Alp, N. Kocabagli, O.H. Muglali, N. Turan, H. Yilmaz, and S. Cakir. 2008. Effects of dietary probiotic and prebiotic supplementation on growth performance and serum IgG concentration of broilers. South African Journal of Animal Sciences 38: 21–27.

    CAS  Google Scholar 

  • Moxley, R.A., D. Smith, T.J. Klopfenstein, G. Erickson, J. Folmer, C. Macken, S. Hinkley, A. Potter, and B. Finlay. 2003. Vaccination and feeding a competitive exclusion product as intervention strategies to reduce the prevalence of Escherichia coli O157:H7 in feedlot cattle. In Edinburgh, UK, Proceedings 5th International Symposium on Shiga Toxin-Producing Escherichia coli Infections, 23 (Abstr.).

    Google Scholar 

  • Nader-MacÃas, M.E.F., M.C. Otero, M.C. Espeche, and N.C. Maldonado. 2008. Advances in the design of probiotic products for the prevention of major diseases in dairy cattle. Journal of Industrial Microbiology and Biotechnology 35: 1387–1395.

    Google Scholar 

  • Nagaraja, T.G., and E.C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. Journal of Dairy Science 90(Suppl. 1): E17–38.

    Google Scholar 

  • Nisbet, D.J., and S.A. Martin. 1990. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Applied and Environmental Microbiology 56: 3515–3518.

    CAS  Google Scholar 

  • Nocek, J.E., and W.P. Kautz. 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. Journal of Dairy Science 89: 260–266.

    CAS  Google Scholar 

  • Nocek, J.E., W.P. Kautz, J.A.Z. Leedle, and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. Journal of Dairy Science 86: 331–335.

    CAS  Google Scholar 

  • Oellermann, S.O., M.J. Arambel, B.A. Kent, and J.L. Walters. 1990. Effect of graded amounts of Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility in cattle. Journal of Dairy Science 73: 2413–2416.

    CAS  Google Scholar 

  • Oetzel, G.R., K.M. Emery, W.P. Kautz, and J.E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. Journal of Dairy Science 90: 2058–2068.

    CAS  Google Scholar 

  • Oliver, S.P., B.M. Jayarao, and R.A. Almeida. 2005. Food-borne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease 2: 115–129.

    CAS  Google Scholar 

  • Oliver, S.P., D.A. Patel, T.R. Callaway, and M.E. Torrence. 2008. ASAS centennial paper: Developments and future outlook for preharvest food safety. Journal of Animal Science 87: 419–437.

    Google Scholar 

  • Otero, M.C., and M.E. Nader-MacÃas. 2006. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Animal Reproduction Science 96: 35–46.

    CAS  Google Scholar 

  • Otero, M.C., L. Morelli, and M.E. Nader-Macias. 2006. Probiotic properties of vaginal lactic acid bacteria to prevent metritis in cattle. Letters in Applied Microbiology 43: 91–97.

    CAS  Google Scholar 

  • Owens, F.N., D.S. Secrist, W.J. Hill, and D.R. Gill. 1998. Acidosis in cattle: A review. Journal of Animal Science 76: 275–286.

    CAS  Google Scholar 

  • Porter, J., K. Mobbs, C.A. Hart, J.R. Saunders, R.W. Pickup, and C. Edwards. 1997. Detection, distribution, and probable fate of Escherichia coli O157 from asymptomatic cattle on a dairy farm. Journal of Applied Microbiology 83: 297–306.

    CAS  Google Scholar 

  • Raeth-Knight, M.L., J.G. Linn, and H.G. Jung. 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of holstein dairy cows. Journal of Dairy Science 90: 1802–1809.

    CAS  Google Scholar 

  • Ransom, J.R., K.E. Belk, J.N. Sofos, J.A. Scanga, M.L. Rossman, G.C. Smith, and J.D. Tatum. 2003. Investigation of on-farm management practices as pre-harvest beef microbiological interventions. Centennial: National Cattlemen’s Beef Association Research Fact Sheet.

    Google Scholar 

  • Reid, C.A., A. Small, S.M. Avery, and S. Buncic. 2002. Presence of food-borne pathogens on cattle hides. Food Control 13: 411–415.

    Google Scholar 

  • Ross, R.P., S. Mills, C. Hill, G.F. Fitzgerald, and C. Stanton. 2010. Specific metabolite production by gut microbiota as a basis for probiotic function. International Dairy Journal 20: 269–276.

    CAS  Google Scholar 

  • Russell, J.B., and T. Hino. 1984. Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis. Journal of Dairy Science 68: 1712–1721.

    Google Scholar 

  • Savelkoul, H., and E. Tijhaar. 2007. Animal health and immunomodulation of the natural defense system. Dierg. immunomod. natuurl. weer. 132: 764–766.

    Google Scholar 

  • Schamberger, G.P., and F. Diez-Gonzalez. 2002. Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. Journal of Food Protection 65: 1381–1387.

    Google Scholar 

  • Scharff, R.L. 2010. Health-related costs from food-borne illness in the United States. Washington: Georgetown University.

    Google Scholar 

  • Schierack, P., L.H. Wieler, D. Taras, V. Herwig, B. Tachu, A. Hlinak, M.F.G. Schmidt, and L. Scharek. 2007. Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Veterinary Immunology and Immunopathology 118: 1–11.

    CAS  Google Scholar 

  • Schrezenmeir, J., and M. De Vrese. 2001. Probiotics, prebiotics, and synbiotics-approaching a definition. The American Journal of Clinical Nutrition 73(Suppl.): 354s–361s.

    Google Scholar 

  • Sievert, S.J., and R.D. Shaver. 1993. Carbohydrate and Aspergillus oryzae effects on intake, digestion, and milk production by dairy cows. Journal of Dairy Science 76: 245–254.

    CAS  Google Scholar 

  • Slyter, L.L. 1976. Influence of acidosis on rumen function. Journal of Animal Science 43: 910–929.

    CAS  Google Scholar 

  • Stefan, G. 1997. Food safety issues affecting the dairy beef industry. Journal of Dairy Science 80: 3458–3462.

    CAS  Google Scholar 

  • Stein, D.R., D.T. Allen, E.B. Perry, J.C. Bruner, K.W. Gates, T.G. Rehberger, K. Mertz, D. Jones, and L.J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. Journal of Dairy Science 89: 111–125.

    CAS  Google Scholar 

  • Stephens, T.P., G.H. Loneragan, L.M. Chichester, and M.M. Brashears. 2007a. Prevalence and enumeration of Escherichia coli O157 in steers receiving various strains of Lactobacillus-based direct-fed microbials. Journal of Food Protection 70: 1252–1255.

    CAS  Google Scholar 

  • Stephens, T.P., G.H. Loneragan, E. Karunasena, and M.M. Brashears. 2007b. Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. Journal of Food Protection 70: 2386–2391.

    CAS  Google Scholar 

  • Stewart, C.S., and M.P. Bryant. 1988. The rumen microbial ecosystem. London: Elsevier Science Publishers, Ltd.

    Google Scholar 

  • Tabe, E.S., J. Oloya, D.K. Doetkott, M.L. Bauer, P.S. Gibbs, and M.L. Khaitsa. 2008. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. Journal of Food Protection 71: 539–544.

    Google Scholar 

  • Tejido, M.L., M.J. Ranilla, R. García-Martinez, and M.D. Carro. 2005. In vitro microbial growth and rumen fermentation of different substrates as affected by the addition of disodium malate. Journal of Animal Science 81: 31–38.

    CAS  Google Scholar 

  • USDA/APHIS. 2003a. Salmonella and Campylobacter on U. S. dairy operations. USDA/APHIS-VS Centers for Epidemiology and Animal Health.

    Google Scholar 

  • USDA/APHIS. 2003b. Salmonella and Listeria in bulk tank milk on U.S. dairies. USDA/APHIS-VS Centers for Epidemiology and Animal Health.

    Google Scholar 

  • USDA-ERS. 2001. ERS estimates food-borne disease costs at $6.9 billion per year. Economic Research Service-United States Department of Agriculture.

    Google Scholar 

  • USDA-ERS. 2009. Farm milk production. Economic Research Service, USDA.

    Google Scholar 

  • Vosough Ahmadi, B., K. Frankena, J. Turner, A.G.J. Velthuis, H. Hogeveen, and R.B.M. Huirne. 2007. Effectiveness of simulated interventions in reducing the estimated prevalence of E. coli O157:H7 in lactating cows in dairy herds. Veterinary Research 38: 755–771.

    Google Scholar 

  • Walsh, M.C., G.E. Gardiner, O.M. Hart, P.G. Lawlor, M. Daly, B. Lynch, B.T. Richert, S. Radcliffe, L. Giblin, C. Hill, G.F. Fitzgerald, C. Stanton, and P. Ross. 2008. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiology Ecology 64: 317–327.

    CAS  Google Scholar 

  • Weiss, W.P., D.J. Wyatt, and T.R. McKelvey. 2008. Effect of feeding propionibacteria on milk production by early lactation dairy cows. Journal of Dairy Science 91: 646–652.

    CAS  Google Scholar 

  • Wells, J.E., D.O. Krause, T.R. Callaway, and J.B. Russell. 1997. A bacteriocin-mediated antagonism by ruminal lactobacilli against Streptococcus bovis. FEMS Microbiology Ecology 22: 237–243.

    CAS  Google Scholar 

  • Wiedmeirer, R.D., M.J. Arambel, and J.L. Walters. 1987. Effect of yeast culture and Aspergillus oryzae fermantation extract on ruminal characteristics and nutrient digestibility. Journal of Dairy Science 70: 2063–2068.

    Google Scholar 

  • Wiemann, M. 2003. How do probiotic feed additives work? International Poultry Production 11: 7–9.

    Google Scholar 

  • Williams, P.E.V., C.A.G. Tait, G.M. Innes, and C.J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69: 3016–3026.

    CAS  Google Scholar 

  • Windschitl, P.M. 1992. Effects of probiotic supplementation of hull-less barley- and corn-based diets on bacterial fermentation in continuous culture of ruminal contents. Canadian Journal of Animal Science 72: 265–272.

    Google Scholar 

  • Yasuda, K., S. Hashikawa, H. Sakamoto, Y. Tomita, S. Shibata, and T. Fukata. 2007. A new synbiotic consisting of Lactobacillus casei subsp. casei and dextran improves milk production in Holstein dairy cows. The Journal of Veterinary Medical Science 69: 205–208.

    Google Scholar 

  • Yoon, I.K., and M.D. Stern. 1996. Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. Journal of Dairy Science 79: 411–417.

    CAS  Google Scholar 

  • Younts-Dahl, S.M., M.L. Galyean, G.H. Loneragan, N.A. Elam, and M.M. Brashears. 2004. Dietary supplementation with Lactobacillus- and Propionibacterium-based direct-fed microbials and prevalence of Escherichia coli O157 in beef feedlot cattle and on hides at harvest. Journal of Food Protection 67: 889–893.

    CAS  Google Scholar 

  • Yu, P., J.T. Huber, C.B. Theurer, K.H. Chen, L.G. Nussio, and Z. Wu. 1997. Effect of steam-flaked or steam-rolled corn with or without Aspergillus oryzae in the diet on performance of dairy cows fed during hot weather. Journal of Dairy Science 80: 3293–3297.

    CAS  Google Scholar 

  • Zhang, W., M.S.P. Azevedo, A.M. Gonzalez, L.J. Saif, T. Van Nguyen, K. Wen, A.E. Yousef, and L. Yuan. 2008. Influence of probiotic Lactobacilli colonization on neonatal B cell responses in a gnotobiotic pig model of human rotavirus infection and disease. Veterinary Immunology and Immunopathology 122: 175–181.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Callaway .

Editor information

Editors and Affiliations

Additional information

Mandatory Disclaimer

“Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, or exclusion of others that may be suitable.”

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Callaway, T.R., Edrington, T.S., Poole, T.L., Nisbet, D.J. (2012). Current Status of Practical Applications: Probiotics in Dairy Cattle. In: Callaway, T., Ricke, S. (eds) Direct-Fed Microbials and Prebiotics for Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1311-0_8

Download citation

Publish with us

Policies and ethics