Oriented Attachment (OA) with Solid–Solid Interface

  • Edson Roberto Leite
  • Caue Ribeiro
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


One of the characteristics of the OA mechanism not found in the OR (Ostwald ripening) mechanism is the presence of a solid–solid interface between nanocrystals, indicating that the growth process begins only after contact is established between particles.


Solid Interface Particle Rotation Total Surface Energy Orient Attachment Stable Polymorph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U., Alivisatos, A.P.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 5, 1309 (2009)CrossRefGoogle Scholar
  2. 2.
    Moldovan, D., Wolf, D., Phillpot, S.R.: Theory of diffusion-accommodated grain rotation in columnar polycrystalline microstructures. Acta Mater. 49, 3521 (2001)CrossRefGoogle Scholar
  3. 3.
    Moldovan, D., Wolf, D., Phillpot, S.R., Haslam, A.J.: Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation. Acta Mater. 50, 3397 (2002)CrossRefGoogle Scholar
  4. 4.
    Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S.R.: Scaling behavior of grain-rotation-induced grain growth. Phys Rev Lett 89, 206101 (2002)CrossRefGoogle Scholar
  5. 5.
    Haslam, A.J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H.: Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51, 2097 (2003)CrossRefGoogle Scholar
  6. 6.
    Jensen, P.: Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999)CrossRefGoogle Scholar
  7. 7.
    Zhu, H.L., Averback, R.S.: Sintering of nano-particle powders: Simulations and experiments. mater. Manuf. Processes 11, 905 (1996)CrossRefGoogle Scholar
  8. 8.
    Zhu, H.L., Averback, R.S.: Sintering processes of two nanoparticles: A study by molecular dynamics simulations. Philos. Mag. Lett. 73, 27 (1996)CrossRefGoogle Scholar
  9. 9.
    Zhang, H.Z., Huang, F., Gilbert, B., Banfield, J.F.: Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B 107, 13051 (2003)CrossRefGoogle Scholar
  10. 10.
    Yeadon, M., Yang, J.C., Averback, R.S., Bullard, J.W., Olynick, D.L., Gibson, J.M.: In-situ observations of classical grain growth mechanisms during sintering of copper nanoparticles on (001) copper. Appl. Phys. Lett. 71, 1631 (1997)CrossRefGoogle Scholar
  11. 11.
    Yeadon, M., Ghaly, M., Yang, J.C., Averback, R.S., Gibson, J.M.: “Contact epitaxy” observed in supported nanoparticles. Appl. Phys. Lett. 73, 3208 (1998)CrossRefGoogle Scholar
  12. 12.
    Harris, K.E., Singh, V.V., King, A.H.: Grain rotation in thin films of gold. Acta Mater. 46, 2623 (1998)CrossRefGoogle Scholar
  13. 13.
    Ribeiro, C., Lee, E.J.H., Giraldi, T.R., Aguiar, R., Longo, E., Leite, E.R.: In situ oriented crystal growth in a ceramic nanostructured system. J. Appl. Phys. 97, 024313 (2005)CrossRefGoogle Scholar
  14. 14.
    Thompson, C.V.: Secondary grain growth in thin films of semiconductors: Theoretical aspects. J. Appl. Phys. 58, 763 (1985)CrossRefGoogle Scholar
  15. 15.
    Thompson, C.V., Carel, R.: Texture development in polycrystalline thin films. Materials Science and Engineering: B-Advanced Functional Solid-State Materials 32, 211 (1995)Google Scholar
  16. 16.
    Thompson, C.V., Smith, H.I.: Surface-energy-driven secondary grain growth in ultrathin (<100 nm) films of silicon. Appl. Phys. Lett. 44, 603 (1984)CrossRefGoogle Scholar
  17. 17.
    Wong, C.C., Smith, H.I., Thompson, C.V.: Surface-energy-driven secondary grain growth in thin Au films. Appl. Phys. Lett. 48, 335 (1986)CrossRefGoogle Scholar
  18. 18.
    Leite, E., Khan, A., Scotch, A.M., Chan, H.M., Harmer, M.P.: Proceeding of the sintering Conference 1999, 355, Penn State University, State College PA, (2000)Google Scholar
  19. 19.
    Leite, E.R., Vila, C., Bettini, J., Longo, E.: Synthesis of niobia nanocrystals with controlled morphology. J Phys Chem B 110, 18088 (2006)CrossRefGoogle Scholar
  20. 20.
    Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G., Sommerdijk, N.A.J.M.: The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 13, 1455 (2009)CrossRefGoogle Scholar
  21. 21.
    Burrows, N.D., Yuwono, V.M., Penn, R.L.: Quantifying the kinetics of crystal growth by oriented aggregation. MRS Bull. 35, 133 (2010)CrossRefGoogle Scholar
  22. 22.
    Tang, Z., Kotov, N.A., Giersig, M.: Spontaneous organization of single cdte nanoparticles into luminescent nanowires. Science 12, 237 (2002)CrossRefGoogle Scholar
  23. 23.
    Yuwono, V.M., Burrows, N.D., Soltis, J.A., Penn, R.L.: Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed. J Am Chem Soc 132, 2163 (2010)CrossRefGoogle Scholar
  24. 24.
    Navrotski, A.: Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA 101, 12096 (2004)CrossRefGoogle Scholar
  25. 25.
    Garvie, R.C.: The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69, 1238 (1965)CrossRefGoogle Scholar
  26. 26.
    Garvie, R.C.: Phase analysis in zirconia systems. J. Am. Cer. Soc. 55, 303 (1972)CrossRefGoogle Scholar
  27. 27.
    Garvie, R.C.: Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82, 218 (1978)CrossRefGoogle Scholar
  28. 28.
    Shukla, S., Seal, S.: Thermodynamic tetragonal phase stability in Sol–Gel derived nanodomains of pure zirconia. J Phys Chem B 108, 3395 (2004)CrossRefGoogle Scholar
  29. 29.
    Guo, G.Y., Chen, L.: A nearly pure monoclinic nanocrystalline zirconia. J. Solid State Chem. 178, 1675 (2005)CrossRefGoogle Scholar
  30. 30.
    Navrotski, A., Kleppa, O.J.: Enthalpy of the anatase-rutile transformation. J. Am. Cer. Soc. 50, 626 (1967)CrossRefGoogle Scholar
  31. 31.
    Barringer, E.A., Bowen, H.K.: High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1, 414 (1985)CrossRefGoogle Scholar
  32. 32.
    Jean, J.H., Ring, T.A.: Nucleation and growth of monosized titania powders from alcohol solution. Langmuir 2, 251 (1986)CrossRefGoogle Scholar
  33. 33.
    Mates, T.E., Ring, T.A.: Steric stability of alkoxy-precipitated TiO2 in alcohol solutions. Colloids Surf. 24, 299 (1987)CrossRefGoogle Scholar
  34. 34.
    Kavan, L., Kratochvilova, K., Gratzel, M.: Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem. 394, 93 (1995)CrossRefGoogle Scholar
  35. 35.
    Garnweitner, G., Antonietti, M., Niederberger, M.: Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. Chem. Comm. 3, 397 (2005)CrossRefGoogle Scholar
  36. 36.
    Trentler, T.J., Dentler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999)CrossRefGoogle Scholar
  37. 37.
    Ragai, J., Lotfi, W.: Effect of preparative pH and ageing media on the crystallographic transformation of amorphous TiO2 to anatase and rutile. Colloids Surf. 61, 97 (1991)CrossRefGoogle Scholar
  38. 38.
    Han, S., Choi, S.H., Kim, S.S., Cho, M., Jang, B., Kim, D.Y., Yoon, J., Hyeon, T.: Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1, 812 (2005)CrossRefGoogle Scholar
  39. 39.
    Zhang, H.Z., Banfield, J.F.: Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chem. Mater. 14, 4145 (2002)CrossRefGoogle Scholar
  40. 40.
    Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kalkarni, S.K., Doran, G.S., Whit, J.: Colloquium paper: Nanoscience: Underlying physical Concepts and phenomena: Energetics of nanocrystalline TiO2. Proc Natl Acad Sci USA 99, 6476 (2002)CrossRefGoogle Scholar
  41. 41.
    Barnard, A.S., Zapol, P.: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J Phys Chem B 108, 18435 (2004)CrossRefGoogle Scholar
  42. 42.
    Barnard, A.S., Zapol, P.: Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys. Rev. B 70, 235403 (2004)CrossRefGoogle Scholar
  43. 43.
    Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Wood, B.F., Li, G., Boerio-Goates, J., Tissue, B.M.: Energy crossovers in nanocrystalline zirconia. J. Am. Cer. Soc. 88, 160 (2005)CrossRefGoogle Scholar
  44. 44.
    Shannon, R.D., Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Cer. Soc. 48, 391 (1965)CrossRefGoogle Scholar
  45. 45.
    Gribb, A.A., Banfield, J.F.: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 82, 717 (1997)Google Scholar
  46. 46.
    Yanagisawa, K., Ovenstone, J.: Crystallization of anatase from amorphous titania using the hydrothermal technique:  effects of starting material and temperature. J Phys Chem B 103, 7781 (1999)CrossRefGoogle Scholar
  47. 47.
    Kormann, C., Bahnemann, D.W., Homann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J Phys Chem 92, 5196 (1988)CrossRefGoogle Scholar
  48. 48.
    Penn, R.L., Oskam, G., Strathmann, T.J., Searson, P.C., Stone, A.T., Veblen, D.R.: Epitaxial assembly in aged colloids. J Phys Chem B 105, 2177 (2001)CrossRefGoogle Scholar
  49. 49.
    Oskam, G., Nellore, A., Penn, R.L., Searson, P.C.: The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio. J Phys Chem B 107, 1734 (2003)CrossRefGoogle Scholar
  50. 50.
    Li, W.J., Osora, H., Otero, L., Duncan, D.C., Fox, M.A.: Photoelectrochemistry of a substituted-Ru(bpy)3 2+-labeled polyimide and nanocrystalline SnO2 composite formulated as a thin-film electrode. J Phys Chem A 102, 5333 (1998)CrossRefGoogle Scholar
  51. 51.
    Bedja, I., Kamat, P.V., Hua, X., Lappin, A.G., Hotchandani, S.: Photosensitization of nanocrystalline ZnO films by Bis(2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid)ruthenium(II). Langmuir 12, 2398 (1997)CrossRefGoogle Scholar
  52. 52.
    Barnard, A.S., Zapol, P.: A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J Chem Phys 121, 4276 (2004)CrossRefGoogle Scholar
  53. 53.
    Barnard, A.S., Zapol, P., Curtiss, L.A.: Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theory Comput. 1, 107 (2005)CrossRefGoogle Scholar
  54. 54.
    Barnard, A., Saponjic, Z., Tiede, D., Rajh, T., Curtiss, L.: Multi-scale modeling of titanium dioxide: Controlling shape with surface chemistry. Rev. Adv. Mater. Sci. 10, 21 (2005)Google Scholar
  55. 55.
    Barnard, A.S., Yeredla, R.R., Xu, H.F.: Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles. Nanotechnology 17, 3039 (2006)CrossRefGoogle Scholar
  56. 56.
    Feldmann, C.: Preparation of nanoscale pigment particles. Adv Mater 13, 1301 (2001)CrossRefGoogle Scholar
  57. 57.
    Oskam, Z.S.Hu., Penn, R.L., Pesika, N., Searson, P.C.: Coarsening of metal oxide nanoparticles. Phys. Rev. E 66, 011403 (2002)CrossRefGoogle Scholar
  58. 58.
    Huang, F., Zhang, H.Z., Banfield, J.F.: Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett 3, 373 (2003)CrossRefGoogle Scholar
  59. 59.
    Lifshitz, M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 (1961)CrossRefGoogle Scholar
  60. 60.
    Kukushkin, S.A., Slyozov, V.V.: Crystallization of binary melts and decay of supersaturated solid solutions at the ostwald ripening stage under non-isothermal conditions. J. Phys. Chem. Solids 56, 1259 (1995)CrossRefGoogle Scholar
  61. 61.
    Penn, R.L., Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549 (1999)CrossRefGoogle Scholar
  62. 62.
    Polleux, J., Pinna, N., Antonietti, M., Niederberger, M.: Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv Mater 16, 436 (2004)CrossRefGoogle Scholar
  63. 63.
    Lee, E.J.H., Ribeiro, C., Longo, E., Leite, E.R.: Oriented attachment:  An effective mechanism in the formation of anisotropic nanocrystals. J Phys Chem B 109, 20842 (2005)CrossRefGoogle Scholar
  64. 64.
    Ribeiro, C., Lee, E.J.H., Longo, E., Leite, E.R.: A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. Chemphyschem 6, 690 (2005)CrossRefGoogle Scholar
  65. 65.
    Drews, T.O., Katsoulakis, M.A., Tsapatsis, M.: A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles. J Phys Chem B 109, 23879 (2005)CrossRefGoogle Scholar
  66. 66.
    Ribeiro, C., Lee, E.J.H., Longo, E., Leite, E.R.: Oriented attachment mechanism in anisotropic nanocrystals: A “polymerization” approach. Chemphyschem 7, 664 (2006)CrossRefGoogle Scholar
  67. 67.
    Ribeiro, C., Vila, C., Matos, J.M.E., Bettini, J., Longo, E., Leite, E.R.: Role of the oriented attachment mechanism in the phase transformation of oxide nanocrystals. Chem. Eur. J. 13, 5798 (2007)CrossRefGoogle Scholar
  68. 68.
    Ribeiro, C., Barrado, C.M., de Camargo, E.R., Longo, E., Leite, E.R.: Phase transformation in titania nanocrystals by the oriented attachment mechanism: The role of the pH value. Chem. Eur. J. 15, 2217 (2009)CrossRefGoogle Scholar

Copyright information

© Edson Roberto Leite and Caue Ribeiro 2012

Authors and Affiliations

  1. 1.Centro de Ciências Exatas e de TecnologiaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Agropecuária (EMBRAPA)Empresa Brasileira de PesquisaSão CarlosBrazil

Personalised recommendations