Skip to main content

Recovering function fields from their decomposition graphs

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

We develop the global theory of a strategy to tackle a program initiated by Bogomolov in 1990. That program aims at giving a group-theoretical recipe by which one can reconstruct function fields K | k with td(K | k) > 1 and k algebraically closed from the maximal pro- abelian-by-central Galois group Π K c of K, where is any prime number ≠char(k).

Mathematics Subject Classification (2010): Primary 12E, 14E, 14H, 14J Secondary 12E30, 14E99, 14H30, 14J99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that for an abelian group A, its -adic completion is by definition \(\widehat{A} :{=\lim }_{{ \leftarrow\atop e} }\,A/{\mathcal{l}}^{e}\).

References

  1. Artin, E.,Geometric Algebra, Interscience Publishers Inc., New York, 1957

    Google Scholar 

  2. Bogomolov, F. A., On two conjectures in birational algebraic geometry, in: Algebraic Geometry and Analytic Geometry, ICM-90 Satellite Conference Proceedings, ed. A. Fujiki et all, Springer Verlag Tokyo 1991.

    Google Scholar 

  3. Bogomolov, F. A. and Tschinkel, Y.,Commuting elements in Galois groups of function fields, in: Motives, Polylogarithms and Hodge theory, eds F.A. Bogomolov, L. Katzarkov, International Press, 2002.

    Google Scholar 

  4. Bogomolov, F. A. and Tschinkel, Y., Reconstruction of function fields, See arXiv:math/0303075v2[math.AG]16Oct2003,

    Google Scholar 

  5. Bogomolov, F. A. and Tschinkel, Y.,Reconstruction of function fields, Geometric And Functional Analysis, Vol 18 (2008), 400–462.

    Google Scholar 

  6. Bourbaki, N.,Algèbre commutative, Hermann Paris, 1964.

    Google Scholar 

  7. Deligne, P., Le groupe fondamental de la droite projective moins trois points, in: Galois groups over Q, Math. Sci. Res. Inst. Publ. 16, 79–297, Springer 1989.

    Google Scholar 

  8. Deligne, P., Letter to Pop, September 1995.

    Google Scholar 

  9. Faltings, G.,Curves and their fundamental groups (following Grothendieck, Tamagawa and Mochizuki), Astérisque 252 (1998), Exposé 840.

    Google Scholar 

  10. Geometric Galois Actions I, LMS LNS Vol242, eds. L. Schneps – P. Lochak, Cambridge Univ. Press 1998.

    Google Scholar 

  11. Grothendieck, A., Letter to Faltings, June 1983. See [GGA].

    Google Scholar 

  12. Grothendieck, A., Esquisse d’un programme, 1984. See [GGA].

    Google Scholar 

  13. Kim, M., The motivic fundamental group of P 1 ∖{0, 1,∞} and the theorem of Siegel, Invent. Mathematicae 161 (2005), 629–656.

    Google Scholar 

  14. Kleiman, S. L., The Picard Scheme. Fundamental algebraic geometry, Math. Surveys Monogr.  123, 235–321.

    Google Scholar 

  15. Koenigsmann, J., On the “Section Conjecture” in anabelian geometry, J. reine angew. Math.  588 (2005), 221–235.

    Google Scholar 

  16. Kuhlmann, F.-V., Book on Valuation Theory.See:  http://math.usask.ca/\~{}fvk/Fvkbook.htm.

  17. Lang, S., Algebra, Revised third edition. Graduate Texts in Mathematics 211. Springer-Verlag, New York, 2002.

    Google Scholar 

  18. Lang, S., Introduction to Algebraic geometry, Third printing, with corrections. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1972.

    Google Scholar 

  19. Mochizuki, Sh.,Absolute Anabelian Cuspidalizations of Proper Hyperbolic Curves, See http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html.

  20. Mumford, D., The Red Book of Varieties and Scheme, LNM 1358, 2nd expanded edition, Springer-Verlag 1999.

    Google Scholar 

  21. Neukirch, J.,Über eine algebraische Kennzeichnung der Henselkörper, J. reine angew. Math. 231 (1968), 75–81.

    Google Scholar 

  22. Neukirch, J.,Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper, Invent. math. 6 (1969), 269–314.

    Google Scholar 

  23. Parshin, A. N.,Finiteness Theorems and Hyperbolic Manifolds, in: The Grothendieck Festschrift III, eds. P. Cartier et all, PM Series Vol 88, Birkhäuser Boston, 1990.

    Google Scholar 

  24. Pop, F., On Alterations and birational anabelian geometry, in: Resolution of Singularities, Birkhäuser PM Series, Vol. 181, p.519–532; eds. Herwig Hauser et al., Birkhäuser Verlag, Basel 2000.

    Google Scholar 

  25. Pop, F., Recovering K|k from G K (ℓ), MSRI Talk notes, Fall 1999. See http://www.msri.org/publications/ln/msri/1999/gactions/pop/1/index.html

  26. Pop, F.,The birational anabelian conjecture —revisited—, Manuscript, Princeton/Bonn 2002. See http://www.math.leidenuniv.nl/gtem/view.php

  27. Pop, F., Pro-ℓ birational anabelian geometry over alg. closed fields I, See arXiv:math/0307076v1[math.AG]5July2003.

    Google Scholar 

  28. Pop, F.,Pro-ℓ abelian-by-central Galois theory of Zariski prime divisors, Israel J. Math. 180 (2010), 43–68.

    Google Scholar 

  29. Pop, F.,Inertia elements versus Frobenius elements, Math. Annalen 438 (2010), 1005-1017.

    Google Scholar 

  30. Pop, F.,On the birational anabelian program initiated by Bogomolov I, Manuscript 2009 (submitted).

    Google Scholar 

  31. Roquette, P., Zur Theorie der Konstantenreduktion algebraischer Mannigfaltigkeiten, J. reine angew. Math.  200 (1958), 1–44.

    Google Scholar 

  32. Roquette, P., Nonstandard aspects of Hilbert’s irreducibility theorem, in: Model theory and algebra (A memorial tribute to Abraham Robinson), LNM Vol.  498, Springer, Berlin, 1975. 231–275.

    Google Scholar 

  33. Saidi, M. and Tamagawa, T., Prime to p version of Grothendieck’s anabelian conjecture for Hyperbolic Curves over Finite Fields of Characteristic p > 0, Publ. RIMS Kyoto University 45, no. 1 (2009), 135–186.

    Google Scholar 

  34. Szamuely, T., Groupes de Galois de corps de type fini (d’après Pop), Astérisque 294 (2004), 403–431.

    Google Scholar 

  35. Stix, J., Projective anabelian curves in positive characteristic and descent theory for log-étale covers, thesis, Univ. of Bonn, 2002.

    Google Scholar 

  36. Uchida, K.,Isomorphisms of Galois groups of solvably closed Galois extensions, Tôhoku Math. J. 31 (1979), 359–362.

    Google Scholar 

  37. Uchida, K.,Homomorphisms of Galois groups of solvably closed Galois extensions, J. Math. Soc. Japan 33 (1981).

    Google Scholar 

  38. Zariski, O. and Samuel, P.,Commutative Algebra, Vol. II, Springer-Verlag, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pop .

Editor information

Editors and Affiliations

Additional information

In memory of Serge Lang

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pop, F. (2012). Recovering function fields from their decomposition graphs. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_24

Download citation

Publish with us

Policies and ethics