Extraction and Characterization of Bioactive Carbohydrates with Health Benefits from Marine Resources: Macro- and Microalgae, Cyanobacteria, and Invertebrates



This chapter addresses extraction of bioactive carbohydrates from sustainable marine resources. It describes an integrated approach and workflow of extraction, purification, and characterization methods from the marine targets both in their unmodified form and following suitable processing such as freeze-drying. A major output of this chapter is technologies, processes, and protocols at pilot and analytical scale designed to isolate the bioactive compounds and the optimization of these processes to allow for commercial development of the bioactive compounds by SMEs. This chapter also addresses chosen bioactive carbohydrates that may be isolated from the waste streams of macroalgae and marine fisheries by-products as this is an underutilized source for marine bioactive compounds and an economic problem for the fish processing and seaweed harvesting industries.


Chondroitin Sulfate Brown Seaweed Bead Mill Green Seaweed Hydrazone Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Akher, M., J. K. Hamilton and F. Smith. 1951. The reduction of sugars with sodium borohydride. Journal of American Chemical Society 73: 4691–4692.CrossRefGoogle Scholar
  2. Aluwihare, L. I. and D. J. Repeta. 1999. A comparison of the Chemical Characteristics of Oceanic DOM and Extracellular DOM Produced by Marine Algae. Marine Ecology Progress Series 186: 105–117.CrossRefGoogle Scholar
  3. Avigad, G. 1968. A modified procedure for the colorimetric, ultramicro determination of reducing sugars with the alkaline ferricyanide reagent. Carbohydrate Research 7: 94–97.CrossRefGoogle Scholar
  4. Behr J. and R. Sasisekharan. 2007. Chapter 8 in Glycobiology (C. Sansom and O. Markman, eds., Scion Publishing Ltd, UK).CrossRefGoogle Scholar
  5. Bergé, J. P., E. Debiton, J. Dumay, P. Durand and C. Barthomeuf. 2002. In vitro anti-inflamatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. Journal of Agricultural Food Chemistry 50: 6227–6232.CrossRefGoogle Scholar
  6. Bhakuni, D.S., and D.S. Rawat. 2005. Bioactive marine natural products. New Delhi: Springer.Google Scholar
  7. Bourguet-Kondracki, M.L., and J.M. Kornprobst. 2005. Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis, and Alzheimer’s disease. Advances in Biochemical Engineering/Biotechnology 97: 105–131.PubMedCrossRefGoogle Scholar
  8. Burrows, F., C. Loumie, M. Abazinge and O. Onokpise. 2007. Extraction and evaluation of Chitosan from crab exoskeleton as a seed fungicide and plant growth enhancer. American-Eurasian Journal of Agricultural and Environmental Science 2: 103–111.CrossRefGoogle Scholar
  9. Caceres, P. J., M. J. Carlucci, E. B. Damonte, B. Matsuhiro and E. A. Zuniga. 2000.. Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry 53:81–86.CrossRefGoogle Scholar
  10. Chizhov, A.O., A. Dell, H.R. Morris, A.J. Reason, S.M. Haslam, R.A. McDowell, O.S. Chizhov and A.I. Usov. 1998. Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydrate Research 310: 203–210.CrossRefGoogle Scholar
  11. Chizhov, A.O., A. Dell, H.R. Morris, S.M. Haslam, R.A. McDowell, A.S. Shashkov, N.E. Nifant’ev, E.A. Khatuntseva, and A.I. Usov. 1999. A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research 320: 108–119.PubMedCrossRefGoogle Scholar
  12. Cumashi, A., N.A. Ushakova, M.E. Preobrazhenskaya, A. D’Incecco, et al. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17(5): 541–552.PubMedCrossRefGoogle Scholar
  13. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugar and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  14. d’Ayala, G.G., M. Malinconico, and P. Laurienzo. 2008. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13: 2069–2106.PubMedCrossRefGoogle Scholar
  15. Gerchakov, S. M. and P. G. Hatcher. 1972. Improved technique for analysis of carbohydrates in sediments. Limnology and Oceanography 17: 938–943.CrossRefGoogle Scholar
  16. Geresh, S., I. Adin, E. Yarmolinsky and M. Karpasas, 2002. Characterization of the extracellular polysaccharides of Porphyridium sp.: Molecular weight determination and rheological properties. Carbohydrate Polymers 50: 183–189CrossRefGoogle Scholar
  17. Goni, I., L. Valdivieso, and M. Gudiel-Urbano. 2002. Capacity of edible seaweeds to modify in vitro starch digestibility of wheat bread. Nahrung 46: 18–20.CrossRefGoogle Scholar
  18. Guzman-Murillo, A. and F. Ascencio. 2000. Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Letters in Applied Microbiology 30: 473–478.CrossRefGoogle Scholar
  19. Hahn, T., S. Kelly, K. Muffler, N. Tippkotter, and R. Ulber. 2011. Extraction of lignocellulose and algae for the production of bulk and fine chemicals. In Industrial scale natural products extractions, ed. B. Hans-Jorg and P. Stephan, 221–245. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  20. Haugan, J.A. and S. Liaaenjensen. 1994. Algal Carotenoids 54. Carotenoids of Brown-Algae (Phaeophyceae). Biochemical cystematics and Ecology 22: 31–41.CrossRefGoogle Scholar
  21. Hayes, M., B. Carney, J. Slater, and W. Bruck. 2008. Mining marine shellfish waste for bioactive molecules: chitin and chitosan – Part A: Extraction methods. Journal of Biotechnology 3: 871–877.CrossRefGoogle Scholar
  22. Huheihel, M., V. Ishanu, J. Tal and S. M. Arad. 2002. Activity of Porphyridium sp. polisaccharide against herpes simplex viruses in vitro and in vivo. Journal of Biochemical and Biophysical methods 50: 189–200.CrossRefGoogle Scholar
  23. Johnson D.C and W.R. LaCourse. 1990. LC with pulsed ECD at gold and platinum. Analytical Chemistry 62: 589A–597A.CrossRefGoogle Scholar
  24. Jolles, B., M. Remington, and P. S. Andrews. 1963. Effects of sulphated degraded laminarin on experimental tumour grouth. British Journal of Cancer 17: 109–115.CrossRefGoogle Scholar
  25. Harun, R., M. K. Danquah and G. M. Forde. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology85(2): 199–203.CrossRefGoogle Scholar
  26. Kim, J. D. and C. G. Lee. 2005. Systemic optimization of microalgae for bioactive compound production. Biotechnology and Bioprocessing Engineering 10: 418–424.CrossRefGoogle Scholar
  27. Kim, K.-H., Y.-W Kim, H.B. Kim, B.J. Lee and D.S. Lee. 2006. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters 28: 439–446.CrossRefGoogle Scholar
  28. Kim, E.J., S. Y. Park, J. Y, Lee and J. H. Park. 2010. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterology 10: 96.CrossRefGoogle Scholar
  29. Krishnamoorthy L. and L. K. Mahal. 2009. Glycomic Analysis: An Array of Technologies. ACS Chemical Biology 4(9): 715–732.CrossRefGoogle Scholar
  30. Koyanagi, S., H. Nakagawa, Y. Kuramoto, S. Ohdo, S. Soeda, and H. Shimeno. 2003. Optimizing the dosing schedule of TNP-470 [O-(chloroacetylcarbamoyl)fumagillol] enhances its antitumor and antiangiogenic efficacies. The Journal of Pharmacology and Experimental Therapeutics 304: 669–674.PubMedCrossRefGoogle Scholar
  31. Krishnamoorthy, L., J.W. Bess, A.B. Preston, K. Nagashima, and L.K. Mahal. 2009. HIV-1 and microvesicles from T-cells share a common glycome. Arguing for a common origin. Nature Chemical Biology 5(4): 244–250.PubMedCrossRefGoogle Scholar
  32. Laurienzio, P. 2010. Marine polysaccharides in pharmaceutical applications: an overview. Marine Drugs 8: 2435–2456.CrossRefGoogle Scholar
  33. Li, S. Y., Y. Shabtai and S. M. Arad. 2000. Production and composition of the sulphated cell wall polysaccharide of Porphyridium (Rhodophyta) as affected by CO2 concentration. Phycologia 39: 332–336.CrossRefGoogle Scholar
  34. Lignot, B., V. Lahogue and P. Bourseau. 2003. Enzymatic extraction of Chondroitin Sulfate from skate cartilage and concentration-desalting by ultrafiltration. Journal of Biotechnology 103: 281–284.CrossRefGoogle Scholar
  35. Maksimova, I. V., L. B. Bratkovskaya and S. E. Plekhanov. 2004. Extracellular carbohydrates and polysaccharides of the alga Chlorella pyrenoidosa Chick S-39. The Biological Bulletin31: 175–181.CrossRefGoogle Scholar
  36. McHugh, D. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper No. 441, Rome.Google Scholar
  37. Milledge, J.J. 2011. Commercial applications of microalgae other than as biofuels: a brief overview. Reviews in Environmental Science and Biotechnology 10(1): 31–41.CrossRefGoogle Scholar
  38. Muffler, K., and R. Ulber. 2005. Downstream processing in marine biotechnology. Advances in Biochemical Engineering/Biotechnology 97: 63–103.PubMedCrossRefGoogle Scholar
  39. Myklestad, S. V., E. Skånøy and S. Hestmann. 1997. A sensitive method for analysis of dissolved mono- and polysaccharides in seawater. Marine Chemistry 56: 279–286.CrossRefGoogle Scholar
  40. Neyrinck, A.M., A. Mouson and N.M. Delzenne. 2007. Dietary supplementation with laminarin, a fermentable marine beta (1–3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. International Immunopharmacology 7: 1497–1506.CrossRefGoogle Scholar
  41. O’ Sullivan, L., B. Murphy, P. McLoughlin, P. Duggan, P.G. Lawlor, H. Hughes, and G.E. Gardiner. 2010. Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs 8(7): 2038–2064.CrossRefGoogle Scholar
  42. Olaizola, M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Journal of Biomolecular Engineering 20: 459–466.CrossRefGoogle Scholar
  43. Panagiotopoulos, C., and R. Sempéré. 2005. Analytical methods for the determination of sugars in marine samples: a historical perspective and future directions. Limnology and Oceanography: Methods 3: 419–454.CrossRefGoogle Scholar
  44. Panlasigui, L. N., O. Q. Baello, J. M. Dimatangal and B. D. Dumelod. 2003. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pacific Journal of Clinical Nutrition 12: 209–214.CrossRefGoogle Scholar
  45. Pengzhan, Y., Z. Quanbin, L. Ning, X. Zuhong, W. Yanmei, L. Zhi’en, 2003. Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology 15: 21–27.CrossRefGoogle Scholar
  46. Plaza, M., M. Herrero, A. Cifuentes and E. Ibáñez. 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural Food Chemistry 57: 7159–7170.CrossRefGoogle Scholar
  47. Raja, R., Hemaiswarya, S., Ashok Kumar, N., Sridhar, S, and R. Rengasamy. 2008. A Perspective on the Biotechnological Potential of Microalgae. Critical Reviews in Microbiology 34(2): 77–88.CrossRefGoogle Scholar
  48. Rasmussen, R.S., and M.T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research 52: 237–292.PubMedCrossRefGoogle Scholar
  49. Robic, A., C. Gaillard, J.F. Sassi, Y. Lerat, and M. Lahaye. 2009. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers 91: 652–664.PubMedCrossRefGoogle Scholar
  50. Rocha de Souza, M.C., C. Texeira-Masques, C.M. Guerra-Dore, F.R. Ferreira da Silva, H.A. Olivera-Rocha and E. Lisboa-Leite. 2007. Antioxidant activity of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology 19: 153–160.CrossRefGoogle Scholar
  51. Rinaudo, M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polymer International 57(3): 397–430.CrossRefGoogle Scholar
  52. Rocklin, R. D. and C. A. Pohl. 1983. Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. Journal of Liquid Chromatography 6: 1577–1590.CrossRefGoogle Scholar
  53. Sanz, M.L. and I. Martínez-Castro. 2007. Recent developments in sample preparation for chromatographic analysis of carbohydrates. Journal of Chromatography A 1153: 74–89.CrossRefGoogle Scholar
  54. Sawicki, E., T. R. Hauser, T. W. Stanley and W. Elbert. 1961. The methyl-2-benzothiazolone hydrazone test. Analytical Chemistry 33: 93–96.CrossRefGoogle Scholar
  55. Shriver, Z., S. Raguram and R. Sasisekharan. 2004. Glycomics: a pathway to a class of new and improved therapeutics, Nature Reviews Drug Discovery 3: 863–873.CrossRefGoogle Scholar
  56. Siddhanta, A.K., A.M. Goswami, B.K. Ramavat, K. H. Mody and O.P. Mairh. 2001. Water soluble polysaccharides of marine algal species Ulva (Ulvales, Chlorophyta) of Indian waters. Indian Journal of Marine Sciences 30: 166–172.CrossRefGoogle Scholar
  57. Suárez E. R., J. A. Kralovec and T. B. Grindley. 2010. Isolation of phosphorylated polysaccharides from algae: the immunostimulatory principle of Chlorella pyrenoidosa. Carbohydrate Research345(9): 1190–1204.CrossRefGoogle Scholar
  58. Van Oijen, T., M. J. W. Veldhuis, M. Y. Gorbunov, J. Nishioka, M. A. Van Leeuwe and H. J. W. de Baar. 2005. Enhanced carbohydrate production by Southern Ocean phytoplankton in response to in situ fertilization. Marine Chemistry 93: 33–52.CrossRefGoogle Scholar
  59. Wang, J., Q. Zhang, Z. Zhang and Z. Li. 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules 42(2): 127–132.CrossRefGoogle Scholar
  60. Werz D. B. and P. H. Seeberger. 2005. Carbohydrates as the Next Frontier in Pharmaceutical Research. Chemistry - A European Journal 11(11): 3194–3206.CrossRefGoogle Scholar
  61. Werz, P., H. Seeberger, A. Matthias, B. Oberli, and B.P. Daniel. 2008. Synthesis of a hexasaccharide repeating unit from bacillus anthracis vegetative cell walls. Organic Letters 10: 905–908.PubMedCrossRefGoogle Scholar
  62. Yasuhara-Bell, J., and Y. Lu. 2010. Marine compounds and their antiviral activities. Antiviral Research 86(3): 231–240.PubMedCrossRefGoogle Scholar
  63. Yim, J. H., E. Son, S. Pyo and H. K. Lee. 2005. Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo. Marine Biotechnology (NY) 7: 331–338.CrossRefGoogle Scholar
  64. Zapopozhets T. S., N.N. Besednova and IuN Loenko. 1995. Antibacterial and immunomodulating activity of fucoidan. Antibiot Khimioter 40(2): 9–13.CrossRefGoogle Scholar
  65. Zhang, Z., F. Wang, X. Wang, X. Liu, and Q. Zhang. 2010. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymers 82(1): 118–121.CrossRefGoogle Scholar
  66. Zhou, G., Y. Sun, H. Xin, Y. Zhang, Z. Li and Z. Xu. 2004. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacological Ressearch 50: 47–53.CrossRefGoogle Scholar
  67. Zúñiga, E.A., B. Matsuhiro, and E. Mejías. 2006. Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity. Carbohydrate Polymers 66(2): 208–215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Teagasc Food Research Centre, Moorepark FermoyCo.CorkIreland

Personalised recommendations