Skip to main content

Machinable Mica Dental Glass-Ceramics

  • Chapter
  • First Online:
Glasses and Glass Ceramics for Medical Applications

Abstract

The metal-ceramic restoration is a well established solution for how to overcome the problem of the lack in strength and toughness of the highly aesthetic feldspathic dental ceramics. As shown in the previous chapter the primary consideration for the veneering ceramic is that it has a coefficient of thermal expansion that is appropriately matched to the coefficient of thermal expansion of the metal by the incorporation of leucite, that it bonds well to the metal substructure and provides aesthetic veneers able to mask the color of the underlying metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Abert, C., Beleites, E., Carl, G., Grosse, S., Gudziol, H., Hoeland, W., Hopp, M., Jacobi, R., Jungto, H., Knak, G., Kreisel, L., Musil, R., Naumann, K., Vogel, F., Vogel, W.: Micaceous-cordierite-glass ceramic. US Patent 4,789,649, 1988

    Google Scholar 

  • Comeforo, J.E., Hatch, R.A., Humphrey, R.A., Eitel, W.: Synthetic mica investigations: I, a hot-pressed machinable ceramic dielectric. J. Am. Ceram. Soc. 36(9), 286–294 (1953)

    Article  CAS  Google Scholar 

  • Comyns, A.E.: Fluoride Glasses: Critical Reports on Applied Chemistry, vol. 27. Society of Chemical Industry, John Willey & Sons, Chickester, New York, Toronto, Singapore (1989)

    Google Scholar 

  • Eitel, W., Hatch, R.A., Denny, M.V.: Synthetic mica investigations: 11, role of fluorides in mica batch reactions. J Am Cream. Soc. 36(10), 241–248 (1983)

    Google Scholar 

  • Grossman, D.G.: Machinable glass-ceramics based on tetrasilicic mica. J. Am. Ceram. Soc. 55, 446–449 (1972)

    Article  CAS  Google Scholar 

  • Hakamatsuka, Y., Watanabe, K.: Glass ceramic dental crown and method of manufacturing the same. US Patent 4,799,887, 1989

    Google Scholar 

  • Hoda, S.N., Beal, G.H.: Alkaline earth mica glass-ceramics, advances in ceramics: nucleation and crystallization in glasses. Am. Ceram. Soc. 287–299(4) (1982)

    Google Scholar 

  • Höland, W., Vogel, W., Naumann, K., Jummel, J.: Interface reactions between machinable bioactive glass-ceramics and bone. J. Biomed. Mater. Res. 19, 303–312 (1985)

    Article  Google Scholar 

  • Sarver, J.V., Hummel, F.A.: Stability relations of magnesium metasilicate polymorphs. J. Am. Ceram. Soc. 55(4), 152–157 (1962)

    Article  Google Scholar 

  • Schneider, I., George J., Taub, L.: Method of fabrication of translucent dental restorations without opacious substructures. US Patent 6,033,222, 2000

    Google Scholar 

  • Steidl, J., Assmann, S.: Ceramic dental restoration. US Patent 6,342,302, 2002

    Google Scholar 

  • Wu, J.M, Cannon, W.R., Panzera, C.: Castable glass-ceramic composition useful as dental restorative. US Patent 4,515,634, 1985

    Google Scholar 

References

  • Beall, G.H.: Mica-spodumene glass-ceramic articles. US Patent 3,997,352, 1976

    Google Scholar 

  • Chen, X., Hench, L., Greenspan, D., Zhong, J., Zhang, X.: Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluoroapatite. Ceram. Int. 24(5), 401–410 (1998)

    Article  CAS  Google Scholar 

  • Daniels, W.H., Moore, R.E.: Crystallization of a tetrasilicic fluormica glass. J. Am. Ceram. Soc. 58(5–6), 217–221 (1975)

    Article  CAS  Google Scholar 

  • Eitel, W., Hatch, R.A., Denny, M.: Synthetic mica investigations: II, role of fluorides in mica batch reactions. J. Am. Ceram. Soc. 36(10), 341–348 (1953)

    Article  CAS  Google Scholar 

  • Fujii, T. Eitell, W.: Reaktionen im festen Zustand im System MgO–MgF2–SiO2: Radex-Rdsch. 445–469, 957

    Google Scholar 

  • Grossman, D.G.: Spontaneously-formed fluormica glass-ceramics. US Patent 3,985,531, 1976

    Google Scholar 

  • Hautefeville, P., Compt. rend. 104, 508 (1887)

    Google Scholar 

  • Hinz, W., Kunth, P.O.: Phase equilibrium data for the system MgO–MgF2–SiO2. Am. Miner. 45, 1198–1210 (1960)

    CAS  Google Scholar 

  • Kasuga, T., Kasuga, T.: Glass-ceramic and artificial dental crown formed therefrom. US Patent 5,246,889, 1993

    Google Scholar 

  • Mustafa, E.: Fluorophlogopite porcelain based on talc feldspar mixture. Ceram. Int. 27(1), 9–14 (2001)

    Article  CAS  Google Scholar 

  • Noda, T.: Synthetic mica research in Japan. J. Am. Ceram. Soc. 38(4), 147–152 (1955)

    Article  Google Scholar 

  • Ooishi, T., Matsumoto, A.: Production process of machinable ceramics. US Paent 5,026,412, 1991

    Google Scholar 

  • Reichmann, R., and Middle, V.: Production of synthetic mica, A Report on the synthetic mica at Siemens-Schuckert, issued in 1942

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad El-Meliegy .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

El-Meliegy, E., van Noort, R. (2012). Machinable Mica Dental Glass-Ceramics. In: Glasses and Glass Ceramics for Medical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1228-1_11

Download citation

Publish with us

Policies and ethics