Lipid Rafts, Caveolae and GPI-Linked Proteins

  • Valerie L. Reeves
  • Candice M. Thomas
  • Eric J. Smart
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 729)


Lipid rafts and caveolae are specialized membrane microdomains enriched in sphingolipids and cholesterol. They function in a variety of cellular processes including but not limited to endocytosis, transcytosis, signal transduction and receptor recycling. Here, we outline the similarities and differences between lipid rafts and caveolae as well as discuss important components and functions of each.


Muscular Dystrophy Lipid Raft Adrenergic Receptor Phosphatidic Acid Stimulate Insulin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 1998; 111 (Pt 1):1–9.PubMedGoogle Scholar
  2. 2.
    Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387(6633):569–572.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 1997; 240(1):1–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998; 14:111–136.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 1998; 164(2):103–114.PubMedCrossRefGoogle Scholar
  6. 6.
    Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1998; 1376(3):467–479.PubMedGoogle Scholar
  7. 7.
    Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci 2005; 118(Pt 6):1099–1102.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang TY, Silvius JR. Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys J 2001; 81(5):2762–2773.PubMedCrossRefGoogle Scholar
  9. 9.
    Zacharias DA, Violin JD, Newton AC et al. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, New York, NY 2002; 296(5569):913–916.CrossRefGoogle Scholar
  10. 10.
    Parton RG, Hancock JF. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends in Cell Biology 2004; 14(3):141–147.PubMedCrossRefGoogle Scholar
  11. 11.
    Simons K, Wandinger-Ness A. Polarized sorting in epithelia. Cell 1990; 62(2):207–210.PubMedCrossRefGoogle Scholar
  12. 12.
    Swamy MJ, Ciani L, Ge M et al. Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J 2006; 90(12):4452–4465.PubMedCrossRefGoogle Scholar
  13. 13.
    Harder T, Engelhardt KR. Membrane domains in lymphocytes—from lipid rafts to protein scaffolds. Traffic (Copenhagen, Denmark) 2004; 5(4):265–275.CrossRefGoogle Scholar
  14. 14.
    Marguet D, Lenne PF, Rigneault H et al. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO 2006; 25(15):3446–3457.CrossRefGoogle Scholar
  15. 15.
    Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117(Pt 25):5955–5964.PubMedCrossRefGoogle Scholar
  16. 16.
    Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999; 16(2):145–156.PubMedCrossRefGoogle Scholar
  17. 17.
    Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999; 1451(1):1–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Babiychuk EB, Monastyrskaya K, Burkhard FC et al. Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. FASEB J 2002; 16(10):1177–1184.PubMedCrossRefGoogle Scholar
  19. 19.
    Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1953; 1(4):188–211.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955; 1(5):445–458.PubMedCrossRefGoogle Scholar
  21. 21.
    Palade GE. Blood capillaries of the heart and other organs. Circulation 1961; 24:368–388.PubMedGoogle Scholar
  22. 22.
    Melkonian KA, Ostermeyer AG, Chen JZ et al. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999; 274(6):3910–3917.PubMedCrossRefGoogle Scholar
  23. 23.
    Pyenta PS, Holowka D, Baird B. Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein coredistributed with IgE receptors and outer leaflet lipid raft components. Biophys J 2001; 80(5):2120–]PubMedCrossRefGoogle Scholar
  24. 24.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nature Reviews 2000; 1(1):31–39.PubMedGoogle Scholar
  25. 25.
    Cross GA. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 1990; 6:1–39.PubMedCrossRefGoogle Scholar
  26. 26.
    Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67:199–225.PubMedCrossRefGoogle Scholar
  27. 27.
    Parton RG. Caveolae and caveolins. Curr Opin Cell Biol 1996; 8(4):542–548.PubMedCrossRefGoogle Scholar
  28. 28.
    Schnitzer JE, Oh P, Pinney E et al. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis and capillary permeability of select macromolecules. J Cell Biol 1994; 127(5):1217–1232.PubMedCrossRefGoogle Scholar
  29. 29.
    Yao Q, Chen J, Cao H et al. Caveolin-1 interacts directly with dynamin-2. J Mol Biol 2005; 348(2):491–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic (Copenhagen, Denmark) 2002; 3(5):311–320.CrossRefGoogle Scholar
  31. 31.
    Cohen AW, Razani B, Wang XB et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 2003; 285(1):C222–235.Google Scholar
  32. 32.
    Simons K, Vaz WL. Model systems, lipid rafts and cell membranes. Annu Rev Biophys Biomol Struct 2004; 33:269–295.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu P, Anderson RG. Compartmentalized production of ceramide at the cell surface. J Biol Chem 1995; 270(45):27179–27185.PubMedCrossRefGoogle Scholar
  34. 34.
    Sciorra VA, Morris AJ. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell 1999; 10(11):3863–3876.PubMedGoogle Scholar
  35. 35.
    Rizzo V, Sung A, Oh P et al. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 1998; 273(41):26323–26329.PubMedCrossRefGoogle Scholar
  36. 36.
    Schroeder R, London E, Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 1994; 91(25):12130–12134.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68(3):533–544.PubMedCrossRefGoogle Scholar
  38. 38.
    Munro S. Lipid rafts: elusive or illusive? Cell 2003; 115(4):377–388.PubMedCrossRefGoogle Scholar
  39. 39.
    Smart EJ, Ying YS, Mineo C et al. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci USA 1995; 92(22):10104–10108.PubMedCrossRefGoogle Scholar
  40. 40.
    Smart EJ, Ying Y, Donzell WC et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 1996; 271(46):29427–29435.PubMedCrossRefGoogle Scholar
  41. 41.
    Chang WJ, Rothberg KG, Kamen BA et al. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 1992; 118(1):63–69.PubMedCrossRefGoogle Scholar
  42. 42.
    Rothberg KG, Heuser JE, Donzell WC et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68(4):673–682.PubMedCrossRefGoogle Scholar
  43. 43.
    Smart EJ, Foster DC, Ying YS et al. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 1994; 124(3):307–313.PubMedCrossRefGoogle Scholar
  44. 44.
    Graf GA, Connell PM, van der Westhuyzen DR et al. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem 1999; 274(17):12043–12048.PubMedCrossRefGoogle Scholar
  45. 45.
    Izumi T, Shibata Y, Yamamoto T. The cytoplasmic surface structures of uncoated vesicles in various tissues of rat as revealed by quick-freeze, deep-etching replicas. J Electron Microsc (Tokyo) 1989; 38(1):47–53.Google Scholar
  46. 46.
    Mahaffey DT, Peeler JS, Brodsky FM et al. Clathrin-coated pits contain an integral membrane protein that binds the AP-2 subunit with high affinity. J Biol Chem 1990; 265(27):16514–16520.PubMedGoogle Scholar
  47. 47.
    Glenney JRJr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 1989; 264(34):20163–20166.PubMedGoogle Scholar
  48. 48.
    Glenney JRJr. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Letters 1992; 314(1):45–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Couet J, Li S, Okamoto T et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997; 272(10):6525–6533.PubMedCrossRefGoogle Scholar
  50. 50.
    Feron O, Michel JB, Sase K et al. Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 1998; 37(1):193–200.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamamoto M, Toya Y, Schwencke C et al. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998; 273(41):26962–26968.PubMedCrossRefGoogle Scholar
  52. 52.
    Wary KK, Mariotti A, Zurzolo C et al. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94(5):625–634.PubMedCrossRefGoogle Scholar
  53. 53.
    Murata M, Peranen J, Schreiner R et al. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 1995; 92(22):10339–10343.PubMedCrossRefGoogle Scholar
  54. 54.
    Fra AM, Masserini M, Palestini P et al. A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters 1995; 375(1–2):11–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Parton RG, Simons K. Digging into caveolae. Science, New York, NY 1995; 269(5229):1398–1399.PubMedCrossRefGoogle Scholar
  56. 56.
    Pohl J, Ring A, Stremmel W. Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. J Lipid Res 2002; 43(9):1390–1399.PubMedCrossRefGoogle Scholar
  57. 57.
    Trigatti BL, Anderson RG, Gerber GE. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun 1999; 255(1):34–39.PubMedCrossRefGoogle Scholar
  58. 58.
    Thiele C, Hannah MJ, Fahrenholz F et al. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2(1):42–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Uittenbogaard A, Everson WV, Matveev SV et al. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J Biol Chem 2002; 277(7):4925–4931.PubMedCrossRefGoogle Scholar
  60. 60.
    Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 1998; 273(11):6525–6532.PubMedCrossRefGoogle Scholar
  61. 61.
    Matveev S, van der Westhuyzen DR, Smart EJ. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res 1999; 40(9):1647–1654.PubMedGoogle Scholar
  62. 62.
    Dobbins RL, Chester MW, Stevenson BE et al. A fatty acid-dependent step is critically important for both glucose-and nonglucose-stimulated insulin secretion. J Clin Invest 1998; 101(11):2370–2376.PubMedCrossRefGoogle Scholar
  63. 63.
    Smart EJ, Graf GA, McNiven MA et al. Caveolins, liquid-ordered domains and signal transduction. Mol Cell Biol 1999; 19(11):7289–7304.PubMedGoogle Scholar
  64. 64.
    Xia F, Gao X, Kwan E et al. Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 2004; 279(23):24685–24691.PubMedCrossRefGoogle Scholar
  65. 65.
    Nevins AK, Thurmond DC. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 2005; 280(3):1944–1952.PubMedCrossRefGoogle Scholar
  66. 66.
    Nevins AK, Thurmond DC. Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem 2006; 281(28):18961–18972.PubMedCrossRefGoogle Scholar
  67. 67.
    Schnitzer JE. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 2001; 49(3):265–280.PubMedCrossRefGoogle Scholar
  68. 68.
    Gustavsson J, Parpal S, Karlsson M et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13(14):1961–1971.PubMedGoogle Scholar
  69. 69.
    Razani B, Combs TP, Wang XB et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002; 277(10):8635–8647.PubMedCrossRefGoogle Scholar
  70. 70.
    Park DS, Cohen AW, Frank PG et al. Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 2003; 42(51):15124–15131.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao YY, Liu Y, Stan RV et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 2002; 99(17):11375–11380.PubMedCrossRefGoogle Scholar
  72. 72.
    Koleske AJ, Baltimore D, Lisanti MP. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 1995; 92(5):1381–1385.PubMedCrossRefGoogle Scholar
  73. 73.
    Hayashi K, Matsuda S, Machida K et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 2001; 61(6):2361–2364.PubMedGoogle Scholar
  74. 74.
    Chambliss KL, Yuhanna IS, Mineo C et al. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 2000; 87(11):E44–52.PubMedGoogle Scholar
  75. 75.
    Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev 2001; 27(3):137–142.PubMedCrossRefGoogle Scholar
  76. 76.
    Shoker BS, Jarvis C, Clarke RB et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 1999; 155(6):1811–1815.PubMedCrossRefGoogle Scholar
  77. 77.
    Sotgia F, Rui H, Bonuccelli G et al. Caveolin-1, mammary stem cells and estrogen-dependent breast cancers. Cancer Res 2006; 66(22):10647–10651.PubMedCrossRefGoogle Scholar
  78. 78.
    Williams TM, Hassan GS, Li J et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 2005; 280(26):25134–25145.PubMedCrossRefGoogle Scholar
  79. 79.
    Scherer PE, Okamoto T, Chun M et al. Identification, sequence and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1):131–135.PubMedCrossRefGoogle Scholar
  80. 80.
    Scherer PE, Lewis RY, Volonte D et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 colocalize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997; 272(46):29337–29346.PubMedCrossRefGoogle Scholar
  81. 81.
    Parolini I, Sargiacomo M, Galbiati F et al. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J Biol Chem 1999; 274(36):25718–25725.PubMedCrossRefGoogle Scholar
  82. 82.
    Mora R, Bonilha VL, Marmorstein A et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae and rafts when co-expressed with caveolin-1. J Biol Chem 1999; 274(36):25708–25717.PubMedCrossRefGoogle Scholar
  83. 83.
    Razani B, Wang XB, Engelman JA et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22(7):2329–2344.PubMedCrossRefGoogle Scholar
  84. 84.
    Tang Z, Scherer PE, Okamoto T et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271(4):2255–2261.PubMedCrossRefGoogle Scholar
  85. 85.
    Way M, Parton RG. M-caveolin, a muscle-specific caveolin-related protein. Febs Letters 1995; 376(1–2):108–112.PubMedCrossRefGoogle Scholar
  86. 86.
    Hagiwara Y, Sasaoka T, Araishi K et al. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 2000; 9(20):3047–3054.PubMedCrossRefGoogle Scholar
  87. 87.
    Woodman SE, Park DS, Cohen AW et al. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002; 277(41):38988–38997.PubMedCrossRefGoogle Scholar
  88. 88.
    Steinberg SF. beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J Mol Cell Cardiol 2004; 37(2):407–415.PubMedCrossRefGoogle Scholar
  89. 89.
    Ostrom RS, Gregorian C, Drenan RM et al. Receptor number and caveolar colocalization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 2001; 276(45):42063–42069.PubMedCrossRefGoogle Scholar
  90. 90.
    Steinberg SF, Brunton LL. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 2001; 41:751–773.PubMedCrossRefGoogle Scholar
  91. 91.
    Insel PA, Head BP, Ostrom RS et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 2005; 1047:166–172.PubMedCrossRefGoogle Scholar
  92. 92.
    Calaghan S, Kozera L, White E. Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol 2008; 45(1):88–92.PubMedCrossRefGoogle Scholar
  93. 93.
    Liu L, Brown D, McKee M et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia and glucose intolerance. Cell Metab 2008; 8(4):310–317.PubMedCrossRefGoogle Scholar
  94. 94.
    Jansa P, Mason SW, Hoffmann-Rohrer U et al. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO 1998; 17(10):2855–2864.CrossRefGoogle Scholar
  95. 95.
    Aboulaich N, Ortegren U, Vener AV et al. Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochem Biophys Res Commun 2006; 350(3):657–661.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Valerie L. Reeves
    • 1
  • Candice M. Thomas
    • 1
  • Eric J. Smart
    • 1
  1. 1.Kentucky Pediatric Research InstituteUniversity of KentuckyLexingtonUSA

Personalised recommendations