Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass

Chapter

Abstract

Driven by the world-wide energy crisis, global interest in hydrogen production ­continues to increase. Currently, over 95% of the hydrogen supply in the USA is derived from nonrenewable materials, including coal, oil, and natural gas. Remediation of environmental stress related to fossil fuel use requires hydrogen production from renewable energy sources, such as solar, wind, and biomass. A recently invented microbial electrolysis technology demonstrates a new avenue for sustainable hydrogen production from renewable biomass. It has potential to become an economically feasible approach for hydrogen production due to its high hydrogen yield compared to fermentative hydrogen production and much lower energy requirement (about 10% in theory) compared to hydrogen production via water electrolysis. In this chapter, we begin with an introduction of microbial electrolysis cells (MECs) and the stoichiometry and energetics, followed by a section on the microorganisms in MECs and their plausible electron transfer mechanisms. The state-of-art designs, operation, and evaluation of MECs are also discussed.

Keywords

Microbial electrolysis Exoelectrogen Microbial fuel cell Electrochemistry Current density Coulombic efficiency Hydrogen yields Energy efficiency 

References

  1. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189PubMedCrossRefGoogle Scholar
  2. Bond DR, Holmes DE, Tender LM et al (2002) Electrodereducing microorganisms that harvest energy from marine sediments. Science 295:483–485PubMedCrossRefGoogle Scholar
  3. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42:3401–3406PubMedCrossRefGoogle Scholar
  4. Call D, Merrill M, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells (MECs). Environ Sci Technol 43(6):2179–2183PubMedCrossRefGoogle Scholar
  5. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232PubMedCrossRefGoogle Scholar
  6. Cheng S, Logan BE (2007a) Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104(47):18871–18873PubMedCrossRefGoogle Scholar
  7. Cheng S, Logan BE (2007b) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496CrossRefGoogle Scholar
  8. Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J hydrogen energ 32(13):2296–2304CrossRefGoogle Scholar
  9. Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41(23):8154–8158PubMedCrossRefGoogle Scholar
  10. Gil GC, Chang IS, Kim BH et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334PubMedCrossRefGoogle Scholar
  11. Gorby YA, Yanina S, Malean JS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:11358–11363PubMedCrossRefGoogle Scholar
  12. Holmes DE, Nicoll JS, Bond DR et al (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae Geopsychrobacter electrodiphilus gen nov sp nov in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030PubMedCrossRefGoogle Scholar
  13. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178PubMedCrossRefGoogle Scholar
  14. Hu H, Fan Y, Liu H (2009) Hydrogen production in microbial electrolysis cells using precious-metal-free cathode catalysts. Int J hydrogen energy 34:8535–8542Google Scholar
  15. Kim HJ, Hyun MS, Chang IS et al (1999) A fuel cell type lactate biosensor using a metal reducing bacterium Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367Google Scholar
  16. Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68(1):23–30PubMedCrossRefGoogle Scholar
  17. Kim JR, Cheng S, Oh S-E, Logan BE (2007) Power generation using different cation anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009PubMedCrossRefGoogle Scholar
  18. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  19. Lide DR (1995) CRC handbook of chemistry and physics, 76th edn. CRC, Boca RatonGoogle Scholar
  20. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285PubMedCrossRefGoogle Scholar
  21. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–320PubMedCrossRefGoogle Scholar
  22. Logan BE (2008) Microbial fuel cells. Wiley, New YorkGoogle Scholar
  23. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518PubMedCrossRefGoogle Scholar
  24. Logan BE, Aelterman P, Hamelers B et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192PubMedCrossRefGoogle Scholar
  25. Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air cathode microbial fuel cells. Environ Sci Technol 41:3341–3346PubMedCrossRefGoogle Scholar
  26. Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640PubMedCrossRefGoogle Scholar
  27. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4: 497–508PubMedCrossRefGoogle Scholar
  28. Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefacians MR-1. J Bacteriol 174:3429–3438PubMedGoogle Scholar
  29. Park HS, Kim BH, Kim HS et al (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306CrossRefGoogle Scholar
  30. Pham CA, Jung SJ, Phung NT et al (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134PubMedCrossRefGoogle Scholar
  31. Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382PubMedCrossRefGoogle Scholar
  32. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408PubMedCrossRefGoogle Scholar
  33. Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMedCrossRefGoogle Scholar
  34. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195PubMedCrossRefGoogle Scholar
  35. Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211PubMedCrossRefGoogle Scholar
  36. Rozendal RA, Hamelers HVM, Euverink GJW et al (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632–1640CrossRefGoogle Scholar
  37. Rozendal RA, Hamelers HVM, Molenkamp RJ et al (2007) Performance of single chamber ­biocatalyzed electrolysis with different types of ion exchange membrances. Water Res 41:1984–1994PubMedCrossRefGoogle Scholar
  38. Rozendal RA, Jeremiasse AW, Hamelers HVM et al (2008a) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634PubMedCrossRefGoogle Scholar
  39. Rozendal RA, Jeremiasse AW, Hamelers HVM et al (2008b) Effect of the type of ion exchange membrane on performance ion transport and pH in biocatalyzed electrolysis of wastewater. Water Sci Technol 57:1757–1762PubMedCrossRefGoogle Scholar
  40. Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources. doi: 101016/jjpowsour200812144 DOI:dx.doi.org
  41. Tartakovsky B, Manuel MF, Wang H et al (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energ 34:672–677CrossRefGoogle Scholar
  42. Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological and Ecological EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations