Skip to main content

Hydrogen Production by Cyanobacteria

  • Chapter
  • First Online:
Microbial Technologies in Advanced Biofuels Production

Abstract

The cyanobacteria, formerly known as blue-green algae, are a diverse group of prokaryotes capable of carrying out oxygenic photosynthesis. They are a monophyletic group of Gram-negative bacteria consisting of both freshwater and marine species and grow and prosper in a wide variety of habitats; oceans, rivers and lakes, deserts, and Antarctic ice as well as forming a number of symbioses with different plants and fungi. Cyanobacteria can be either unicellular or filamentous (heterocystous and nonheterocystous), and are present as cells of varying sizes and a broad spectrum of morphologies. Diversity is also seen in the sizes of their genomes, with sequenced genomes ranging from 1.66 (Prochlorococcus marinus) to 9.2 Mbp (Nostoc punctiforme). These organisms continue to serve as models for the study of basic biological process, in particular photosynthesis and, since some filamentous species can differentiate various cell types, heterocysts, akinetes and hormogonia, cellular development, and intracellular communication. Nutritional requirements are minimal and are easily met by simple salt solutions, which might be provided by the dilution of various waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    Article  PubMed  CAS  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263

    Article  PubMed  CAS  Google Scholar 

  • Appel J, Schulz R (1986) Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochim Biophys Acta 1298:141–147

    Article  Google Scholar 

  • Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Axelsson R, Lindblad P (2002) Transcriptional regulation of nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 68:444–447. doi:10.1128/aem.68.1.444-447.2002

    Article  PubMed  CAS  Google Scholar 

  • Benemann JR, Miyamoto K, Hallenbeck PC (1980) Bioengineering aspects of biophotolysis. Enzyme Microb Technol 2:103–111

    Article  CAS  Google Scholar 

  • Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184:1917–1918

    Article  Google Scholar 

  • Berberoglu H, Jay J, Pilon L (2008) Effect of nutrient media on photobiological hydrogen ­production by Anabaena variabilis ATCC 29413. International Journal of Hydrogen Energy 33:1172–1184

    Article  Google Scholar 

  • Burrows EH, Wong WK, Fern X, Chaplen FWR, Ely RL (2009) Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods. Biotechnol Prog 25:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Carrasco CD, Holliday SD, Hansel A, Lindblad P, Golden JW (2005) Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 187:6031–6038

    Article  PubMed  CAS  Google Scholar 

  • Carrieri D, Ananyev G, Costas AMG, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrogen Energy 33:2014–2022

    Article  CAS  Google Scholar 

  • Chen PC, Fan SH, Chiang CL, Lee CM (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3. Int J Hydrogen Energy 33:1460–1464

    Article  CAS  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    Article  CAS  Google Scholar 

  • Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci USA 108(10):3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu JP, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  PubMed  CAS  Google Scholar 

  • Gutthann F, Egert M, Marques A et al (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:161–169

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (1978) Characterization and partial purification of the reversible hydrogenase of Anabaena cylindrical. FEBS Lett 94:261–264

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Kochian LV, Benemann JR (1981) Hydrogen evolution catalyzed by hydrogenase in cultures of cyanobacteria. Z Naturforsch C 36:87–92

    Google Scholar 

  • Hallenbeck PC, Kostel PJ, Benemann JR (1979) Purification and properties of nitrogenase from the cyanobacterium, Anabaena cylindrica. Eur J Biochem 98:275–284

    Article  PubMed  CAS  Google Scholar 

  • Huang H-H, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol 162(1):208–220

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial Heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  CAS  Google Scholar 

  • Kumazawa S (2004) Hydrogen production capability in unicellular cyanobacteria. Plant Cell Physiol 45:S23

    Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering 12, 70–79

    Google Scholar 

  • Lopez-Igual R, Flores E, Herrero A (2010) Inactivation of a Heterocyst-Specific Invertase Indicates a Principal Role of Sucrose Catabolism in Heterocysts of Anabaena sp. J. Bacteriol. 192, 5526–5533

    Google Scholar 

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742–746

    Article  PubMed  CAS  Google Scholar 

  • Mariscal V, Flores E (2010) Multicellularity in a Heterocyst-Forming Cyanobacterium: Pathways for Intercellular Communication Recent advances in phototrophic prokaryotes, in: Hallenbeck PC (ed) Springer, New York, pp 123–135

    Article  PubMed  CAS  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76(15):5032–5038

    Article  PubMed  CAS  Google Scholar 

  • Min H, Sherman LA (2010) Hydrogen production by the unicellular, Diazotrophic cyanobacterium cyanothece sp. Strain ATCC 51142 under Conditions of Continuous Light. Appl. Environ. Microbiol. 76, 4293–4301

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Hallenbeck PC, Benemann JR (1979a) Effects of nitrogen supply on hydrogen production by cultures of Anabaena cylindrica. Biotechnol Bioeng 21:1855–1860

    Article  CAS  Google Scholar 

  • Miyamoto K, Hallenbeck PC, Benemann JR (1979b) Solar-energy conversion by nitrogen-limited cultures of Anabaena cylindrica. J Ferment Technol 57:287–293

    CAS  Google Scholar 

  • Miyamoto K, Hallenbeck PC, Benemann JR (1979c) Hydrogen production by the thermophilic alga mastigocladus-laminosus – effects of nitrogen, temperature, and inhibition of photosynthesis. Appl Environ Microbiol 38:440–446

    PubMed  CAS  Google Scholar 

  • Miyamoto K, Hallenbeck PC, Benemann JR (1979d) Nitrogen-fixation by thermophilic blue-green-algae (cyanobacteria) – temperature characteristics and potential use in biophotolysis. Appl Environ Microbiol 37:454–458

    PubMed  CAS  Google Scholar 

  • Murry MA, Hallenbeck PC, Benemann JR (1984) Immunochemical evidence that nitrogenase is restricted to the heterocysts in Anabaena cylindrica. Arch Microbiol 137:194–199

    Article  CAS  Google Scholar 

  • Murry MA, Hallenbeck PC, Esteva D, Benemann JR (1983) Nitrogenase inactivation by oxygen and enzyme turnover in Anabaena cylindrica. Can J Microbiol 29:1286–1294

    Article  CAS  Google Scholar 

  • Navarro E, Montagud A, de Cordoba PF, Urchueguia JF (2009) Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803. Int J Hydrogen Energy 34:8828–8838

    Article  CAS  Google Scholar 

  • Prabaharan D, Arun Kumar D, Uma L, Subramanian G (2010) Dark hydrogen production in nitrogen atmosphere: an approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 2004. Int J Hydrogen Energy 35:10725–10730. doi:10.1016/j.ijhydene.2010.03.007

    Article  CAS  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Masukawa H (2007) Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Marine Biotechnology 9:128–145

    Article  PubMed  CAS  Google Scholar 

  • Schwarz S, Poss Z, Hoffmann D, Appel J (2010) Hydrogenases and hydrogen metabolism in photosynthetic prokaryotes. In: Hallenbeck PC (ed) Recent advances in phototrophic prokaryotes. Springer, New York, pp 305–348

    Chapter  Google Scholar 

  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate-dehydrogenase in nitrogen-fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC-29133. J Bacteriol 177(21):6184–6194

    PubMed  CAS  Google Scholar 

  • Tamagnini P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720. doi:10.1111/j.1574-6976.2007.00085.x

    Article  PubMed  CAS  Google Scholar 

  • Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 27:1283–1289

    Article  CAS  Google Scholar 

  • Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering 80:777–783

    Chapter  Google Scholar 

  • Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-fixing cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123–131

    PubMed  CAS  Google Scholar 

  • Weyman PD, Pratte B, Thiel T (2008) Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen. Appl Environ Microbiol 74:2103–2110. doi:10.1128/aem.02855-07

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy 31:721–727

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Hallenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallenbeck, P.C. (2012). Hydrogen Production by Cyanobacteria. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_2

Download citation

Publish with us

Policies and ethics